

Bachelor of Computer Applications
(BCA)

OOPS Using C++

 (DBCACO302T24)

Self-Learning Material
(SEM-III)

Jaipur National University
Centre for Distance and Online Education

Established by Government of Rajasthan

Approved by UGC under Sec 2(f) of UGC ACT 1956

&

NAAC A+ Accredited

Jaipur National University Course Code: DBCACO302T24

Object Oriented Programming Using C++

TABLE OF CONTENTS

Course Introduction i

Unit 1

Principle of OOP's
1-16

Unit 2

Basics of C++
17-30

Unit 3

Expression
31-41

Unit 4

Function in C++ 42-51

Unit 5

Classes and Objects
52-66

Unit 6

Constructor and Destructor
67-77

Unit 7

Operator Overloading and Type Conversion
78-93

Unit 8

Inheritance
94-107

Unit 9

The C++ I/O System Basics
108-128

Unit 10 123–165

Working with Files

Unit 11 151-167

Template

Unit 12 168-180

Exception Handling

Unit 13 181-188

Introduction to Standard Template library

Unit 14 189-197

Namespace

Unit 15 198-206

New Style Caste and RTRI

EXPERT COMMITTEE

Prof. Sunil Gupta

(Computer and Systems Sciences, JNU Jaipur)

Mr. Deepak Shekhawat

(Computer and Systems Sciences, JNU Jaipur)

Dr. Shalini Rajawat

(Computer and Systems Sciences, JNU Jaipur)

COURSE COORDINATOR

Mr. Pawan Jakhar

(Computer and Systems Sciences, JNU Jaipur)

UNIT PREPARATION

Unit Writer(s) Assisting &

Proofreading
Unit Editor

Mr. Pawan Jakhar

(Computer and

Systems Sciences,

JNU Jaipur)

(Unit 1-5)

Mr. Satender Singh

(Computer and Systems

Sciences, JNU Jaipur)

(Unit 6-10)

Ms. Komal Sharma

(Computer and

Systems Sciences,

JNU Jaipur)

(Unit 11-15)

Mr. Hitendra Agarwal

(Computer and

Systems Sciences,

JNU Jaipur)

Dr. Satish Pandey

(Computer and

Systems Sciences,

JNU Jaipur)

Secretarial Assistance

Mr. Mukesh Sharma

COURSE INTRODUCTION

"Object-oriented programming is an exceptionally bad idea which could only have originated

in California."

- Edsger W. Dijkstra

Object-oriented programming (OOP) has revolutionized software development by focusing on

objects and classes to create scalable and maintainable applications. This course explores the key

OOP principles and their implementation in C++, providing students with a comprehensive

understanding of modern programming practices.

This course has 3 credits and is divided into 15 Units. The primary objectives of this course are to

introduce students to core OOP concepts such as abstraction, encapsulation, inheritance, and

polymorphism. Students will build a strong foundation in C++, learning to leverage its features

for various programming tasks. Through practical exercises and projects, students will gain

experience in flow control, functions, dynamic memory management, file handling, and

exception handling.

The course begins with an overview of different paradigms for problem-solving, highlighting the

differences between OOP and procedure-oriented programming. Students will explore the

principles of abstraction and the foundational concepts of OOP, including encapsulation,

inheritance, and polymorphism. The basics of C++ are introduced, covering the structure of a

C++ program, data types, variable declaration, expressions, operators, operator precedence,

evaluation of expressions, type conversions, pointers, arrays, and strings.

Flow control statements are essential for directing the flow of a program. This course covers the

use of if, switch, while, for, do, break, continue, and goto statements. Functions are another

crucial aspect, and students will learn about the scope of variables, parameter passing, default

arguments, inline functions, recursive functions, and pointers to functions. The course also covers

dynamic memory allocation and deallocation using the new and delete operators, as well as

preprocessor directives.

The course then delves into C++ classes and data abstraction. Students will learn about class

definitions, class structure, class objects, class scope, the pointer, friends to a class, static class

members, constant member functions, constructors, and destructors. Polymorphism is explored

in-depth, covering function overloading, operator overloading, and generic programming. The

necessity of templates is discussed, along with function templates and class templates.

Inheritance is another critical concept covered in this course. Students will learn how to define a

class hierarchy and explore different forms of inheritance. The course covers defining base and

derived classes, accessing base class members, and base and derived class construction.

Destructors and virtual base classes are also discussed.

Virtual functions and polymorphism are key topics in this course. Students will learn about static

and dynamic bindings, base and derived class virtual functions, dynamic binding through virtual

functions, the virtual function call mechanism, and pure virtual functions.

Course Outcomes:

At the completion of the course, a student will be able to:

1. Understand the concept of input and output devices of Computers and how it works and

recognize the basic terminology used in computer programming

2. Illustrate the concept of compile and debug programs in C language and use different data

types for writing the programs.

3. Design programs connecting decision structures, loops and functions.

4. Distinguish between call by value and call by address.

5. Understand the dynamic behavior of memory by the use of pointers.

6. Use different data structures and create / manipulate basic data files and developing

applications for real world problems.

Acknowledgements:

The content we have utilized is solely educational in nature. The copyright proprietors of the materials

reproduced in this book have been tracked down as much as possible. The editors apologize for any

violation that may have happened, and they will be happy to rectify any such material in later versions of

this book.

i

1

Chapter 1

 Principle of OOP's

Objective:

At the end of this session students shall be learning:

 Introduction of Principle of OOP's concept

 Understand the Object Oriented Methodology

 Overview of procedure Oriented programming

 What is Object Oriented Programming?

 Object Oriented Languages

Structure:

1.1 Software crisis

1.2 Software Evaluation

1.3 “POP” (Procedure Oriented Programming)

1.4 “OOP” (Object Oriented Programming)

1.5 Basic concepts of “OOP”

1.6 Benefits of “OOP”

1.7 Object Oriented Language

1.8 Application of “OOP”

2

1.1 Software Crisis

The field of software technology is characterized by rapid and continuous advancements, with new

tools and techniques being introduced frequently. This dynamic environment necessitates software

engineers and the industry to constantly innovate in software design and development practices. This

is crucial due to the escalating complexity of software systems and the intense competitiveness within

the industry. However, these swift developments have also precipitated a sense of crisis, prompting the

need to address several critical issues:

 Representing real-life problems entities in system design.

 Designing system with open interfaces.

 Ensure reusability and extensibility of modules.

 Way to develop modules that are tolerant of any changes in future.

 Improve software productivity and decrease software cost.

 Way to improve quality of software.

 Manage time schedules.

1.2 Software Evaluation

Ernest Tello, a prominent writer in artificial intelligence, likened the evolution of software technology

to the growth of a tree. He described distinct phases or "layers" of growth that have accumulated over

the past five decades, each layer representing an improvement over its predecessor. Unlike trees,

where only the uppermost layer remains functional as the tree grows, in software systems, each layer

continues to be operational. This analogy highlights the perpetual functionality and cumulative nature

of software technology layers, which build upon each other to enhance capabilities and adapt to

evolving technological needs.

Fig.1.1. Software Layers of Growth

3

Alan Kay, a key figure in promoting the object-oriented paradigm and a principal designer of

Smalltalk, emphasized the importance of architecture as software complexity increases. He

stated, "As complexity increases, architecture dominates the basic materials." This

underscores the necessity for advanced construction techniques and program structures that

are not merely sequences of programming statements or sets of procedures and modules.

Instead, they must be designed for ease of comprehension, implementation, and modification.

In the 1980s, structured programming gained popularity with languages like C. It provided a

robust methodology for writing moderately complex programs efficiently. However, as

software systems grew larger, structured programming alone often fell short in delivering

bug-free, maintainable, and reusable code.

Object-Oriented Programming (OOP) emerged as an approach to address these shortcomings

by integrating the strengths of structured programming while introducing powerful new

concepts. OOP aims to organize and develop programs in a way that enhances

maintainability, reusability, and scalability. Unlike a programming language, OOP is a

methodology applicable across various programming languages, although not all languages

support OOP concepts equally well.

By adopting Object-Oriented Programming (OOP) principles, developers can address many of

the challenges posed by complex software systems. OOP encourages modular design,

encapsulation, inheritance, and polymorphism, fostering clearer program structures and

facilitating easier adaptation to changing requirements over time. This approach aligns with

Kay's assertion that effective software architecture is crucial for managing and harnessing the

complexities of modern software development.

OOP is a programming paradigm centered on the concepts of classes and objects, and it

includes several key principles such as inheritance, polymorphism, abstraction, and

encapsulation. These concepts work together to promote code reusability, scalability, and

maintainability, making it easier to develop and manage large-scale software projects (Figure

1.2).

4

Fig.1.2: OOP's Module

1.3 Procedure-Oriented Programming

In the procedure-oriented approach, problems are tackled as a series of tasks to be completed,

such as reading data, performing calculations, and printing results. Languages like COBOL,

Fortran, and C exemplify this approach, where the primary focus is on functions. A typical

structure for procedural programming involves breaking down a problem into smaller,

manageable tasks using hierarchical decomposition. This technique specifies the various tasks

needed to solve a problem in a step-by-step manner, ensuring that each function handles a

specific aspect of the overall process (Figure 1.3).

Procedure-oriented programming (POP) involves writing a sequence of instructions for

5

computer to follow and organizing these instructions into groups called “functions”.

Typically, flowcharts are used to map out these actions and depict flow of control from one

step to next.

In programs with multiple functions, many critical data items are often designated as global so

they can be accessed by all functions. While each function can have its own “local data”,

“global data” are susceptible to unintended changes by any function. In large programs, it

becomes challenging to track which data is used by which function. If an external data

structure needs modification, all functions that access this data must also be revised,

increasing the risk of introducing bugs.

Another significant limitation of the procedural approach is its inadequacy in modeling real-

world problems effectively. Functions in POP are action-oriented and do not naturally

correspond to real-world entities. This disconnect makes it harder to represent complex

problems accurately and intuitively, as the procedural approach focuses more on the actions

rather than the elements involved in the problem.

Procedure-oriented programming (POP) exhibits several key characteristics:

 Emphasis on Algorithms: The primary focus is on performing tasks and executing

algorithms.

 Modular Structure: Large programs are broken down into smaller, manageable

units known as functions.

 Global Data Sharing: Many functions share access to global data, allowing for

easier data manipulation across different parts of the program.

 Data Flow: Data moves openly from one function to another throughout the system.

 Data Transformation: Functions are designed to transform data from one form to

another as they execute.

 Top-Down Design: POP employs a top-down approach in program design, starting

from the highest-level task and breaking it down into smaller, more detailed

functions.

1.4 Object Oriented Paradigm

The primary motivation behind development of object-oriented approach was to address the

shortcomings of procedural paradigm. Object-Oriented Programming (OOP) treats data as a

fundamental component of program development, ensuring it is not freely shared across the

6

system. Instead, OOP tightly couples data with the functions that operate on it, safeguarding it

from unintended modifications by external functions.

In OOP, problems are decomposed into distinct entities known as objects. These objects

encapsulate both data and the functions that manipulate this data. The organization of data

and functions in object-oriented programs is illustrated in Figure 1.4. Within this framework,

the data of an object can only be accessed by the functions associated with that specific

object. Nevertheless, functions from one object are permitted to interact with the functions of

other objects. This encapsulation and modularity enhance the robustness and maintainability

of the software (Figure 1.4).

Fig 1.4: Organization of data and function in OOP

Object-oriented programming (OOP) has several distinctive features:

 Data-Centric Approach: Emphasis is placed on data rather than procedures.

 Object Division: Programs are divided into entities known as objects.

 Characterized Data Structures: Data structures are designed to represent the

characteristics of objects.

 Encapsulated Functions: Functions that operate on an object's data are encapsulated

within the data structure.

 Data Encapsulation: Data is hidden and cannot be accessed directly by external

functions.

 Object Communication: Objects can communicate with each other through

functions.

7

 Ease of Extension: New data and functions can be added easily as needed.

 Bottom-Up Design: OOP follows a bottom-up approach in program design.

The newest paradigm in programming, object-oriented programming, still has varied

connotations for different individuals.

1.5 Basic Concepts of Object Oriented Programming

It is necessary to understand some of concepts used extensively in object-orinted

programming. These include:

 “Objects”

 “Classes”

 “Data abstraction and encapsulation”

 “Inheritance”

 “Polymorphism”

 “Dynamic binding”

 “Message passing”

1.5.1 Objects

Objects are fundamental runtime entities in an object-oriented system. They can represent

various real-world and conceptual items, such as a “person, place, bank account, data table, or

any item program needs to manage”. Objects may also encompass user-defined data types like

vectors, time, and lists. The analysis of a programming problem is conducted in terms of

objects and communication between them. Ideally, program objects should closely mirror

real-world objects.

Objects occupy memory space and have associated addresses, similar to records in Pascal or

structures in C. During program execution, objects interact by sending messages to each

other. For instance, in a program with "customer" and "account" objects, the customer object

might send a message to account object to request bank balance. Each object contains data

and the code to manipulate that data. This interaction allows objects to communicate without

needing to know the internal details of each other's data or code. It is sufficient to know type

of message an object accepts and type of response it returns.

Different authors represent objects in various ways, but Figure 1.5 illustrates two notations

commonly used in object-oriented analysis and design.

8

Fig. 1.5 representing an object

1.5.2 Classes

As previously mentioned, objects encapsulate both data and code manipulation

functionalities. By employing classes, the entirety of an object's data and code can be

encapsulated into a user-defined data type. In essence, objects serve as variables of the class

type, allowing for the creation of multiple instances. Each object is linked to the class's data

structure upon instantiation. Consequently, a class constitutes a group of objects sharing

similar characteristics. For instance, in a class named "Fruit," objects like "Mango," "Apple,"

and "Orange" can be instantiated. Classes, being user-defined types, mirror the behavior of

built-in types within a programming language. The syntax employed to instantiate an object is

analogous to creating an integer object in C, facilitating ease of use and comprehension. If

fruit has been defines as a class, then the statement:

Fruit Mango;

Will create an object mango belonging to the class fruit.

1.5.3 Data Abstraction and Encapsulation

Encapsulation, the amalgamation of data and functions into a cohesive unit known as a class,

is a fundamental principle in programming. It serves as a hallmark feature of classes, ensuring

data security and integrity by restricting direct access from the outside world. Only functions

encapsulated within the class can access its data, thereby providing a controlled interface

between the object's data and the program. This safeguarding of data from external access is

commonly referred to as data hiding or information hiding.

9

Abstraction, on the other hand, entails representing essential features without delving into

background details or explanations. Classes leverage abstraction by defining abstract

attributes such as size, weight, and cost, along with functions that operate on these attributes.

By encapsulating the essential properties of an object, classes facilitate abstraction, enabling

developers to focus on core functionalities without getting bogged down by implementation

specifics.

The attributes within a class are often referred to as data members, as they hold information

pertinent to the object's state. Correspondingly, functions that manipulate these data members

are termed methods or member functions, encapsulating the behavior associated with the

object's data.

1.5.4 Inheritance

Inheritance, a cornerstone concept in object-oriented programming (OOP), facilitates the

acquisition of properties from one class by objects of another class. It underpins the notion of

hierarchical classification, allowing for the organization of entities into a structured hierarchy.

For instance, a "robin," a type of bird, belongs to the "flying bird" class, which in turn is a

subclass of the broader "bird" class. This hierarchical arrangement reflects the shared

characteristics among derived classes, as depicted in Figure 1.6.

In OOP, inheritance embodies the principle of reusability, enabling the extension of existing

classes without altering their core structure. This is achieved by deriving a new class from an

existing one, resulting in the new class inheriting the combined features of both parent and

subclass. Thus, inheritance empowers developers to enhance and specialize functionality by

building upon the foundation established in parent classes, fostering code modularity and

extensibility. The real appeal and power of the inheritance mechanism is that it

10

Fig. 1.6 Property inheritances

Allows the programmer to reuse a class i.e. almost, but not exactly, what he wants, and to

tailor the class in such a way that it does not introduced any undesirable side- effects into the

rest of classes (Figure 1.6).

1.5.5 Polymorphism

Polymorphism is a key concept in object-oriented programming (OOP). The term, derived

from Greek, means the ability to take on multiple forms. In OOP, polymorphism allows an

operation to exhibit different behaviors in different instances, depending on the types of data

involved (Figure 1.7).

For example, consider the addition operation. When applied to two numbers, it generates a

sum. If the operands are strings, the operation concatenates them to produce a third string.

This ability of an operator to exhibit different behaviors based on the context is known as

operator overloading.

Similarly, a single function name can handle different numbers and types of arguments, akin

to a word having several meanings depending on the context. This is known as function

overloading, where one function name can perform various tasks depending on the arguments

provided.

11

Fig. 1.7 Polymorphism

Polymorphism is crucial in enabling objects with different internal structures to share the same

external interface. This allows a general class of operations to be accessed uniformly, even though the

specific actions associated with each operation may vary (Figure 1.7).

1.5.6 Dynamic Binding

Binding entails associating a procedure call with the corresponding code to be executed in

response to the call. Dynamic binding, a characteristic feature of polymorphism and

inheritance, implies that the code linked to a particular procedure call is determined only at

runtime. This means that the specific implementation of a function associated with a

polymorphic reference is determined by the dynamic type of that reference when the function

is called.

Consider the "draw" procedure illustrated in Figure 1.7. Through inheritance, every object

inherits this procedure. However, the algorithm executed by the "draw" procedure varies for

each object, leading to its redefinition in each class defining the object. During runtime, the

code corresponding to the object referenced at that moment is invoked, showcasing the

dynamic nature of binding in object-oriented programming.

1.5.7 Message Passing

In object-oriented programming, the process involves several foundational steps:

1. “Creating classes” that define object and their behavior,

2. “Creating objects” from class definitions, and

3. “Establishing communication among objects”.

12

In object-oriented programming, objects communicate with each other through message

passing, which simulates how people exchange information. When an object sends a message

to another object, it's essentially requesting the execution of a procedure or method defined

within the receiving object. This process invokes the function associated with the message

and produces the desired outcome.

For instance, in message passing, you specify:

 The name of the object sending the message.

 The name of the function or message being invoked.

 Any additional information or parameters that need to be sent along with the

message.

This approach allows objects to interact by invoking methods and exchanging data,

enabling the construction of systems that closely model or simulate real-world

scenarios and interactions (Figure 1.8).

 Example:

Employee. Salary (name)

Fig 1.8: Employee Salary

Everything has a life cycle. They are able to be made and destroyed. An object can be

communicated with as long as it is living.

1.6 Benefits of OOP

Object-oriented programming (OOP) provides numerous benefits to both program designers

and users, addressing many challenges associated with software development and enhancing

software quality. Here are the principal advantages of OOP:

 Code Reusability through Inheritance: Inheritance allows the elimination of

redundant code by extending the use of existing classes. This promotes modular

design and facilitates easier maintenance and updates.

13

 Modularity and Reusability: Programs can be constructed using standard working

modules (objects) that communicate with each other. This modular approach saves

development time, enhances productivity, and improves code organization.

 Data Hiding for Security: Encapsulation and data hiding help create secure

programs by preventing external code from accessing sensitive data within objects.

This ensures better security and reduces the risk of unintended data modification.

 Support for Multiple Instances: Objects can exist as multiple instances

simultaneously without interfering with each other, promoting flexibility and

scalability in program design.

 Mapping to Problem Domain: OOP allows developers to map objects directly to

entities in the problem domain, facilitating clearer and more intuitive software

modeling.

 Effective Project Management: Partitioning work based on objects enables

efficient project management, with teams focusing on specific modules or objects,

leading to better collaboration and code maintenance.

 Detailed Modeling: The data-centered design approach in OOP enables capturing

intricate details of models and implementing them effectively in code.

 Scalability: OOP systems can easily scale from small to large systems,

accommodating growth and expansion without significant redesign.

 Simplified Interface Design: Message passing between objects simplifies interface

descriptions with external systems, enhancing interoperability and integration

capabilities.

 Managing Software Complexity: OOP provides tools and methodologies to

manage software complexity effectively, leading to clearer, more maintainable

codebases.

While object-oriented systems offer a range of features that can significantly benefit

software projects, their relevance depends on the specific project type and the

preferences of the programmer. However, several challenges must be addressed to

fully realize these benefits.

For example, the availability of comprehensive object libraries is crucial for effective

code reuse. As technology evolves rapidly, current products may quickly become

outdated, necessitating strict controls and protocols to ensure that reuse efforts are

not compromised.

14

1.7 Object Oriented Language

Object-oriented programming (OOP) is not confined to specific languages; rather, it can be

implemented in various programming languages like C and Pascal. However, as programs

grow larger, implementing OOP concepts in such languages can become cumbersome and

prone to confusion. Thus, languages specifically designed to support OOP make

implementation more straightforward.

Languages claiming to support OOP must encompass several key OOP concepts, leading to

their classification into two categories:

1. “Object-based Programming Languages”: These languages primarily focus on

encapsulation and object identity. Key features include:

 - “Data encapsulation”

 - “Data hiding and access mechanisms”

 - “Automatic initialization and cleanup of objects”

 - “Operator overloading”

 Ada is an example of a typical object-based programming language.

2. Object-oriented Programming Languages: These languages encompass all object-based

programming features along with two additional features: inheritance and dynamic binding.

Object-oriented programming can thus be characterized by:

 “Object-based features + Inheritance + Dynamic binding”

 These additional features enhance the flexibility and modularity of the codebase, allowing

for more sophisticated and scalable software solutions.

1.8 Application of OOP

Object-oriented programming (OOP) has emerged as a prominent trend in modern software

engineering, eliciting widespread interest and excitement among software engineers. While its

applications were initially prevalent in user interface design, particularly in windowing

systems, OOP has now found relevance in a myriad of areas.

Real-world business systems, often characterized by complexity and numerous interconnected

15

objects with intricate attributes and methods, benefit from OOP's ability to simplify such

intricate problems. OOP's promising applications extend to various domains, including real-

time systems, simulation and modeling, object-oriented databases, hypertext and hypermedia,

AI and expert systems, neural networks and parallel programming, decision support and

office automation systems, as well as CIM/CAM/CAD systems.

The evolution of OOP from language to design and now into analysis signifies its maturity

and adaptability across different phases of software development. It is anticipated that the

comprehensive OOP environment will not only enhance the quality of software systems but

also improve productivity within the software industry. Consequently, object-oriented

technology is poised to revolutionize the thought processes, analysis techniques, design

methodologies, and implementation practices employed by software engineers in developing

future systems.

1.9. Summary.

OOP offers several benefits to both the program designer and the user. Object- Orientation

contributes to the solution of many problems associated with the development and quality of

software products. The new technology promises greater programmer productivity, better

quality of software and lesser maintenance cost. Today, traditional programming languages

need to be modified and needs the development of Object-Oriented Programming concepts, as

it is easily understood by Human being. More things are expected when you are learning the

language of C++.

Over the past five decades, software technology has undergone a series of transformations.

Procedural-oriented programming (POP) follows a top-down approach, viewing problems as

sequences of tasks to be performed, with functions written to execute these tasks. However,

POP suffers from two major drawbacks: data can freely move around the program, and it

doesn't model real-world problems effectively. Object-oriented programming (OOP) was

developed to address these limitations, adopting a bottom-up approach. In OOP, problems are

viewed as collections of objects, where objects are instances of classes. Data abstraction

involves encapsulating essential features without delving into background details.

Inheritance is a key feature of OOP, allowing objects of one class to acquire properties from

objects of another class. Polymorphism enables the use of a single name to represent multiple

forms, permitting the existence of multiple functions with the same name in a program.

16

Dynamic binding ensures that the code associated with a procedure is determined at runtime.

Message passing involves specifying the object's name, function's name, and information to

be sent.

C++, a superset of the C language, introduces several features such as objects, inheritance,

function overloading, and operator overloading to C. It also supports interactive input and

output features and introduces the // symbol for single-line comments. Similar to C programs,

execution of all C++ programs begins at the main() function. These advancements in C++

enrich programming capabilities, fostering more modular and robust software development.

1.10. Self-Assessment Questions

1. What are the main factors contributing to the software crisis?

2. How does the procedural-oriented programming (POP) paradigm contribute to the

challenges faced in software development?

3. What are the limitations of POP in effectively managing complex software projects?

4. How does object-oriented programming (OOP) address the shortcomings of POP in

software development?

5. What are the key principles of OOP, and how do they promote better software design

and development?

6. Can you provide examples of real-world problems that are better suited for OOP

compared to POP?

7. How does OOP improve code reusability and maintainability compared to POP?

8. What role does abstraction play in both POP and OOP, and how does it impact software

development practices?

9. What are some of the challenges associated with transitioning from POP to OOP in

software projects?

17

Chapter 2

Basics of C++

Objective:

At the end of this session students shall be learning:

 A Brief History of C and C++

 Difference between C and C++

 Features of C++

 Advantages and Disadvantages of C++

 Applications of C++

 Writing and Executing a C++ Program

 Program Structure and Rules

 Sample C++ Program

 Comments

 Return Type of MAIN()

 Namespace std

 Header File

 Output Statement (COUT)

 Input Statement (CIN)

Structure:

2.1. A Brief History of C and C++

2.2. Difference between C and C++

2.3. Features of C++

2.4. Advantages and Disadvantages of C++

2.5. Applications of C++

2.6. Writing and Executing a C++ Program

2.7. Program Structure and Rules

2.8. Sample C++ Program

2.9. Comments

2.10. Return Type of MAIN()Namespace std

2.11. Header File

2.12. Output Statement (COUT)

2.13. Input Statement (CIN)

2.14. Text Editor

18

2.15. C++ Complier

2.16. Summary

2.17. Self Assessment QuestionsNote

2.1. A Brief History of C and C++

C is a general-purpose, procedural, imperative computer programming language developed in

1972 by Dennis M. Ritchie at the Bell Telephone Laboratories to develop the UNIX operating

system. C is the most widely used computer language. It keeps fluctuating at number one scale

of popularity along with Java programming language, which is also equally popular and most

widely used among modern software programmers.

C++, an object-oriented programming language, emerged from the hands of Bjarne

Stroustrup at AT&T Bell Laboratories in the early 1980s. Stroustrup, influenced by Simula67

and a dedicated advocate of C, aimed to amalgamate the strengths of both languages,

resulting in a more potent language capable of supporting object-oriented programming while

preserving C's robustness and elegance. The outcome was C++, an extension of C with the

significant addition of the class construct from Simula67. Initially dubbed 'C with classes' due

to the pivotal role of classes, the language was officially named C++ in 1983, reflecting its

evolutionary nature denoted by the increment operator ++ in C.

C++ serves as a superset of C, with nearly all C programs also qualifying as C++ programs.

However, there exist minor discrepancies that may prevent a C program from compiling

under a C++ compiler. Notably, C++ introduces vital enhancements such as classes,

inheritance, function overloading, and operator overloading. These features empower the

creation of abstract data types, inheritance of properties from existing data types, and support

for polymorphism, thereby solidifying C++'s status as a truly object-oriented language.

2.2. Difference between C and C++

C and C++ are both programming languages. C is a procedural programming language

whereas C++ is an object oriented programming language. There were certain drawbacks in

the C language, because of that C++ was developed.

The major difference between C and C++ is that C is a procedural programming language

and does not support classes and objects, while C++ is a combination of both procedural and

object oriented programming language; therefore C++ can be called a hybrid language.

19

The following table presents differences between C and C++ in detail.

C C++

C was developed by Dennis Ritchie between

1969 and 1973 at AT&T Bell Labs.

C++ was developed by Bjarne Stroustrup in 1979

with C++'s predecessor "C with Classes".

When compared to C++, C is a subset of C++. C++ is a superset of C. C++ can run most of

C code while C cannot run C++ code.

C supports procedural programming paradigm for

code development.

C++ supports both procedural and object oriented

programming paradigms; therefore C++ is also

called a hybrid language.

C C++

C does not support object oriented programming;

therefore it has no support for polymorphism,

encapsulation, and inheritance.

Being an object oriented programming language

C++ supports polymorphism, encapsulation, and

inheritance.

In C (because it is a procedural programming language),

data and functions are separate and free entities.

In C++ (when it is used as object oriented

programming language), data and functions are

encapsulated together in form of an object. For

creating objects class provides a blueprint of

structure of the object.

In C, data are free entities and can be manipulated by

outside code. This is because C does not support

information hiding.

In C++, Encapsulation hides the data to ensure that

data structures and operators are used as intended.

C, being a procedural programming, it is a

function driven language.

While, C++, being an object oriented

programming, it is an object driven language.

C does not support function and operator

overloading.

C++ supports both function and operator

overloading.

C does not allow functions to be defined inside

structures.

In C++, functions can be used inside a structure.

20

2.3. Features of C++

1. Multi-Paradigm: Supports procedural, object-oriented, and generic programming

paradigms.

2. Efficiency: Known for performance and direct hardware access, ideal for system-level

programming.

3. Standard Library: Rich collection of data structures, algorithms, and utilities for rapid

development.

4. Object-Oriented Programming (OOP): Classes, objects, encapsulation, inheritance, and

polymorphism for modular and reusable code.

5. Templates: Enables generic programming, enhancing code flexibility and performance.

6. Pointer Support: Allows direct memory manipulation and efficient resource handling.

7. Platform Independence: Code portability across different platforms and architectures.

8. Low-Level Manipulation: Features for low-level programming, like pointer arithmetic.

9. Exception Handling: Mechanisms to gracefully manage errors and exceptions.

10. Operator Overloading: Custom definitions for operators in user-defined types,

improving code expressiveness.

C does not have namespace feature. C++ uses NAMESPACE which avoid name

collisions.

A namespace is a declarative region that provides

a scope to the identifiers (the names of types,

functions, variables, etc) inside it. Namespaces are

used to organize code into logical groups and to

prevent name collisions that can occur especially

when your code base includes multiple libraries.

All identifiers at namespace scope are visible to

one another without qualification. Identifiers

outside the namespace can access the members by

using the fully qualified name for each identifier.

C uses functions for input/output. For
example scanf and printf.

C++ uses objects for input output. For
example cin and cout.

C does not support reference variables. C++ supports reference variables.

C has no support for virtual and friend functions. C++ supports virtual and friend functions.

C provides malloc() and calloc()functions for
dynamic memory allocation, and free() for

memory de-allocation.

C++ provides new operator for memory
allocation
and delete operator for memory de-allocation.

C does not provide direct support for error

handling (also called exception handling)

C++ provides support for exception handling.

Exceptions are used for "hard" errors that make the

code incorrect.

21

2.4. Advantages and Disadvantages of C++

C++, built upon the foundations of the C language, emerged in the early 1980s through the

pioneering work of Bjarne Stroustrup at AT&T Bell Laboratories. The choice of the name

"C++" reflects its lineage, with the "++" symbol signifying an extension, as it is a syntactic

construct in C used for incrementing a variable. Notably, C++ encompasses a significant

portion of C's syntax and functionality, rendering it a superset of C. Consequently, the

majority of C programs can be compiled using a C++ compiler, underscoring the

compatibility and evolutionary relationship between the two languages. A C++ program is a

collection of commands, which tell the computer to do “something.” This collection of

commands is usually called C++ source code

C++ is the Mid-Level programming language because it acquires the feature of Low level as

well as high-level programming language. Using C++ Programming Language we can create

a different kind of Software, These are:

 System software, application software

 device drivers, embedded software

 high-performance server and client applications and

 entertainment software such as video games

 Object oriented

 Portable language (writing a program irrespective of operating system as well as

Hardware)

 Low-level language like Assembly language on Machine language called portable.

 C++ embraces multi-paradigm programming, accommodating various styles of

programming. A paradigm dictates the logical, structural, and procedural aspects of

a program. C++ is renowned for its support of three primary paradigms: Generic,

Imperative, and Object-Oriented.

 This versatility renders C++ invaluable for low-level programming tasks while

remaining highly efficient for general-purpose applications

 C++ provide performance and memory efficiency.

 It provides a high-level abstraction.

22

 In the language of the problem domain.

 C++ is compatible with C.

 C++ used reusability of code.

 C++ used inheritance, polymorphism.

 Portability allows developing program irrespective of hardware

 It allows moving the program development for one platform to another platform

C compatible (COMP) : Programs developed in 'C' language can be moved without any

modifications into C++

C++ is an object oriented embedded language which is having the characteristics of low-level

language & which is also developing the embedded software. Which language having low-

level features

Disadvantages

 It has no security

 Complex in a very large high-level program.

 Used for platform specific application commonly.

 For a particular operating system or platform, the library set has usually chosen that

locks.

 When C++ used for web applications complex and difficult to debug.

 C++ can't support garbage collection.

 C++ is not secure because it has a pointer, friend function, and global variable.

 No support for threads built in.

2.5. Applications of C++

Mainly C++ Language is used for Develop Desktop application and system software. Some

application of C++ language are given below.

 For Develop Graphical related application like computer and mobile games.

 To evaluate any kind of mathematical equation use C++ language.

 Like window xp , C++ Language are also used for design OS.

 Google also use C++ for Indexing

 Few parts of apple OS X are written in C++ programming language.

23

 Internet browser Firefox are written in C++ programming language

 All major applications of adobe systems are developed in C++ programming

language. Like Photoshop, ImageReady, Illustrator and Adobe Premier.

 Some of the Google applications are also written in C++, including Google file

system and Google Chromium.

 C++ are used for design database like MySQL.

2.6. Writing and Executing a C++ Program

Installation of TC is very simple just download turbo C or C++ and run .exe files

When you install the Turbo C or C++ compiler on your system, then TC directory is created on

the hard disk and various sub directories such as INCLUDE, and LIB etc. are created under TC

(Figure 2.1).

Figure 2.1 Turbo C

 INCLUDE: Contain the header files of C and C++.

 LIB: Contain the library files of C and C++.

 BGI: Contain Graphics related files.

 BIN: Contain .exe, .obj etc files.

 TC Editor: TC Editor is very simple and easy to use; here i will give you all tips

related to TC Editor and some shortcut keys related to TC Editor which is very useful at

the time of coding. Turbo C is a most common C language compiler. Below i will

24

discuss all about its Interfaces.

TC Editor: The interface of Turbo C is very simple. When IDE screen appears, the menu bar

is activated. It contains various menus such as:

· File: This menu contains group of commands used for save , edit , print program, exit from

Turbo C editor etc.

· Edit: This menu contains group of commands used for editing C program source code.

Example Copy, Cut, Paste, Undo etc.

· Search: This menu contains group of commands used for searching specific word as well as

replacing it with another one.

· Run: This menu contains group of commands used for running C program.

· Compile: This menu contains group of commands used for compiling C program.

· Debug: This menu contains group of commands used for debugging C program.

Project: This menu contains group of commands used for opening, closing and creating

projects.

· Options: This menu contains group of commands used for configuring IDE of Turbo C and

setting up directories etc.

· Windows: This menu contains group of commands used for opening, closing various

windows of IDE.

· Help: This menu is used to get help about specific topic of C language. Similarly to get help

about a specific keyword or identifier of C.

Shortcut keys Related to TC Editor

 Alt + x : Close TC Editor.

 Clt + f9 : Run C Program.

 Alt + f9 : Compile C Code.

 Alt + Enter : Get Full Screen or Half Screen TC Editor.

 Clt + y : Delete complete above line of cursor.

 Shift + Right arrow : Select Line of Code.

 Clt + Insert : Copy.

 Shift + Insert : Paste.

 Shift + Delete : Delete.

25

Figure 2.2 Turbo C Editor

2.7. Program Structure and Rules

Like C, the C++ program is a collection of function. The above example contain only one

function main(). As usual execution begins at main(). Every C++ program must have a

main(). C++ is a free form language. With a few exception, the compiler ignore carriage

return and white spaces. Like C, the C++ statements terminate with semicolons.

2.8. Sample C++ Program

C++ basic programs in simple and easy way, here I will use C++ programming language for

coding of any programs. Also I will discuss all program with the help of pictures and most easy

and real life examples. We are trying to give a best and easy tips, tricks and way of

programming. I hope this guideline is helpful for all our visitors to learn C++.

The purpose of learning a programming language is to become a better programmer; that is, to

become more effective at designing and implementing new systems and at maintaining old

ones.

C++ supports a variety of programming styles. You can write in the style of Fortran, C,

Smalltalk, etc., in any language. Each style can achieve its aims effectively while maintaining

runtime and space efficiency. C++ is used by hundreds of thousands of programmers in

essentially every application domain. C++ is being highly used to write device drivers and

other software that rely on direct manipulation of hardware under real-time constraints. C++ is

26

widely used for teaching and research because it is clean enough for successful teaching of

basic concepts. Anyone who has used either an Apple Macintosh or a PC running Windows

has indirectly used C++ because the primary user interfaces of these systems are written in

C++.

Let us begin with a simple example of a C++ program that prints a string on the screen.

“#include<iostream> Using namespace std; int main()

{

cout<<” c++ is better than c \n”; return 0;

}”

This simple program demonstrates several C++ features.

2.9. Comments

C++ introduces a new comment symbol // (double slash). Comment start with a double slash

symbol and terminate at the end of the line. A comment may start anywhere in the line, and

whatever follows till the end of the line is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multiline comments can be

written as follows:

“// This is an example of”

“// C++ program to illustrate”

“// some of its features”

The C comment symbols /,/ are still valid and are more suitable for multiline comments.

The following comment is allowed:

“/ This is an example of C++ program to illustrate some of its features

/”

The only statement in program 1.10.1 is an output statement. The statement Cout<<”C++ is

better than C.”;

Causes the string in quotation marks to be displayed on the screen. This statement introduces

two new C++ features, “cout” and “<<”. The identifier cout(pronounced as C out) is a

predefined object that represents the standard output stream in C++. Here, the standard output

stream represents the screen. It is also possible to redirect the output to other output devices.

The operator “<<” is called the insertion or put to operator.

2.10. Return Type of MAIN()

In C++, main () returns an integer value to the operating system. Therefore, every main() in

C++ should end with a return (0) statement; otherwise a warning an error might occur. Since

27

main() returns an integer type for main () is explicitly specified as int. Note that the default return

type for all function in C++ is int. The following main without type and return will run with a

warning:

main ()

{

…………..

}

2.11. Namespace std

Namespace is a new concept introduced by the ANSI C++ standards committee. This defines a

scope for the identifiers that are used in a program. For using the identifier defined in the

namespace scope we must include the using directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All ANSI C++

programs must include this directive. This will bring all the identifiers defined in std to the

current global scope. Using and namespace are the new keyword of C++.

2.12. Header File

Header files are included at the beginning, akin to C++ programs. Here, "iostream" serves as a

header file providing input and output streams. These files contain pre-declared function

libraries for user convenience. In the program, we utilize the #include directive:

#include <iostream>

This directive instructs the compiler to integrate the contents of the file enclosed within angular

brackets into the source file. The "iostream" header file should be included at the outset of all

programs utilizing input/output statements.

The statement `cin >> number1;` represents an input statement, prompting the program to await

user input of a number. The entered number is then stored in the variable "number1". The

identifier "cin" (pronounced 'C in') is a predefined object in C++ corresponding to the standard

input stream, representing the keyboard.

The ">>" operator, known as the extraction or get-from operator, retrieves the value from the

keyboard and assigns it to the variable on its right. This operation resembles the familiar

"scanf()" function in C. Similar to "<<" for output, the ">>" operator can also be overloaded

(Figure 2.3).

28

Figure 2.3 Header File

2.13. Output Statement (COUT)

We have used the insertion operator << repeatedly in the last two statements for printing

results.

The statement

Cout << “Sum = “ << sum << “\n”;

First sends the string “Sum = “ to cout and then sends the value of sum. Finally, it sends the

newline character so that the next output will be in the new line. The multiple use of << n one

statement is called cascading. When cascading an output operator, we should ensure

necessary blank spaces between different items. Using the cascading technique, the last two

statements can be combined as follows:

Cout << “Sum = “ << sum << “\n”

<< “Average = “ << average << “\n”;

This is one statement but provides two line of output. If you want only one line of output, the

statement will be:

Cout << “Sum = “ << sum << “,”

<< “Average = “ << average << “\n”; The output will be:

Sum = 14, average = 7

cout <<, is used to print anything on screen, same as printf in C++ language. cin and cout are

same as scanf and printf, only difference is that you do not need to mention format specifiers

like, %dfor int etc, in cout & cin.

2.14. Input Statement (CIN)

We can also cascade input iperator >> as shown below:

29

Cin >> number1 >> number2;

The values are assigned from left to right. That is, if we key in two values, say, 10 and 20, then 10

will be assigned to munber1 and 20 to number 2.

2.15. Text Editor

This will be used to type your program. Examples of few editors include Windows Notepad,

OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of text editor can vary on different operating systems. Foexample, Notepad

will be used on Windows and vim or vi can be used on windows as well as Linux, or UNIX.

The files you create with your editor are called source files and for C++ they typically are named

with the extension .cpp, .cp, or .c.

A text editor should be in place to start your C++ programming.

2.16. C++ Compiler

This is an actual C++ compiler, which will be used to compile your source code into final

executable program. Most C++ compilers don't care what extension you give to your source

code, but if you don't specify otherwise, many will use .cpp by default.

 Most frequently used and free available compiler is GNU C/C++ compiler, otherwise you can

have compilers either from HP or Solaris if you have the respective Operating Systems.

2.17. Summary

This chapter provides you a glimpse of C++. So far we have learned the concept of Object

Oriented Programming paradigm and in this chapter we have the concepts of C++ and the

advantages abd disadvantages of programming in C++. Eventually, we have learned the basics

of writing programs using C++ and introduction of an editor and its methods. We have learned

the basic of installation of C++ editor and writing the program and the requirements of

programming in C++. Ordinarily, so far we have not yet started writing program using OOPs

programming and understanding of writing programs with Object Oriented Programming with

C++.

We have discussed the concept of function in C++, its declaration and definition. we have also

discussed the concept of class, its declaration and definition. It also explained the ways for

creating objects, accessing the data members of the class. We have seen the way to pass objects

as arguments to the functions with call by value and call by reference.

30

2.18. Self Assessment Questions:

Q. 1. what is a function ? How will you define a function in C++ ?

Q. 2. How are the argument data types specified for a C++ function? Explain with Suitable

example.

Q. 3. What types of functions are available in C++ ? Explain.

Q. 4. What is recursion? While writing any recursive function what thing(s) must be taken

care of ?

Q.5. What is inline function? When will you make a function inline and why ?

Q.6. What is a class? How objects of a class are created ?

Q.7. What is the significance of scope resolution operator (::) ?

Q.8. Define data members, member function, private and public members with example.

Q.9. Define a class student with the following specifications: Adm_no integer

 Sname 20 characters

 Eng, math, science float (marks in three subjects) Total float

 Ctotal() a function to calculate eng + math + science marks

Public member functions of class student

 Takedata() function to accept values for adm_no , sname,

marks in eng, math, science and invoke ctotal() to calculate

total.

 Showdata() function to display all the data members on the screen.

Q.10. Define a string data type with the following functionality:

 A constructor having no parameters,

 Constructors which initialize strings as follows:

 A constructor that creates a string of specific size

 Constructor that initializes using a pointer string

 A copy constructor

 Define the destructor for the class

 It has overloaded operators. (This part of question will be taken up in the later units).

31

 There is operation for finding length of the string.

32

Chapter 3

Expression

Objective:

At the end of this session students shall be learning:

 Introduction C++ Tokens

 Understand different Data types in C++

 Understand Declaration of Variables

 How to Initialization of Variables in C++

 Understand Reference Variables

 Know the Operators and use of the Operators in C++

 Type Cast Operator in C++

 Understand Memory Management operators and use of the same

 Mentioning of Expression

 Understand Statement

 Understand Symbolic Constant

 Type Compatibility with C++

Structure:

3.1. Introduction C++ Tokens

3.2. Understand different Data types in C++

3.3. Variables

3.4. C++ Identifiers

3.5. C++ Keywords

3.6. Trigraphs

3.7. Whitespace in C++

3.8. Understand Statement

3.9. Summary

3.10. Self Assessment Questions

33

3.1 Introduction C++ Tokens

As a programing language, when we consider a C++ program, it can be defined as a collection

of objects that communicate via invoking each other's methods. In this chapter we are now

considering the use of Object Oriented Concepts of C++, and precisely we are now briefly

look into what a class, object, methods, and instant variables mean.

Object − Objects have states and behaviors. Example: A dog has states - color, name, breed as

well as behaviors - wagging, barking, eating. An object is an instance of a class.

Class − A class can be defined as a template/blueprint that describes the behaviors/states that

object of its type support.

Methods − A method is basically a behavior. A class can contain many methods. It is in methods

where the logics are written, data is manipulated and all the actions are executed.

Instance Variables − each object has its unique set of instance variables. An object's state is

created by the values assigned to these instance variables.

3.1.1 C++ Program Structure

Let us look at a simple code in C++ that would print the words Hello World.

This program could be explained as: −

 The C++ language defines several headers, which contain information that is either

necessary or useful to your program. For this program, the header <iostream> is

needed.

 The line using namespace std; tells the compiler to use the std namespace.

 Namespaces are a relatively recent addition to C++.

 The next line '// main() is where program execution begins.' is a single-line comment

available in C++. Single-line comments begin with // and stop at the end of the line.

 The line int main() is the main function where program execution begins.

 The next line cout << "Hello World"; causes the message "Hello World" to be

“#include <iostream>

using namespace std;

// main() is where program execution begins.

int main() {

cout << "Hello World"; // prints Hello World

return 0;

}”

34

displayed on the screen.

 The next line return 0; terminates main()function and causes it to return the value 0 to

the calling process.

3.1.2 Compile and Execute C++ Program

In the earlier chapter, we have learned how to write and save the file, compile and run

the program. Please follow the steps given below −

 Open a text editor and add the code as above.

 Save the file as: hello.cpp

 Open a command prompt and go to the directory where you saved the file.

 Type program and press enter to compile your code. If there are no errors in your

code the command prompt will take you to the next line and would generate an

executable file.

 Now, type and execute by running the executable program.

 You will be able to see ' Hello World ' printed on the window.

3.2 Understand different Data types in C++

Let us understand the different Datatypes in C++ (being a programming language). They are

used to define type of variables and contents used. Data types define the way you use storage

in the programs you write. Data types can be of two types:

1. Built-in Data types

2. User-defined or Abstract Data types

3.2.1 Built-in Data Types

These are the data types which are predefined and are wired directly into the compiler.

For eg: int, char etc.

35

Basic Built in Data types in C++

char for character storage (1 byte)

int for integral number (2 byte)

float single precision floating point (4 byte)

double double precision floating point numbers (4 byte)

Example:

char a = 'A'; //

character type int a = 1; //

integer type

float a = 3.14159; // floating point type

double a = 6e-4; // double type (e is for exponential)

3.2.2 User defined

a. Abstract data types

These are the type, that user creates as a class or a structure. In C++ these are classes where as in

C language user-defined datatypes were implemented as structures. Other Built in Datatypes

in C++

bool Boolean (True or False)

void Without any Value wchar_t

Wide Character

b. Enum as Data type in C++

Enumerated type declares a new type-name along with a sequence of values containing

identifiers which has values starting from 0 and incrementing by 1 every time.

For Example: enum day(mon, tues, wed, thurs, fri) d;

Here an enumeration of days is defined which is represented by the variable d. mon will hold

value 0, tue will have 1 and so on. We can also explicitly assign values, like, enum day(mon,

tue=7, wed);. Here, mon will be 0, tue will be assigned 7, so wed will get value 8.

c. Modifiers in C++

In C++, special words called modifiers, can be used to modify the meaning of the predefined

36

built-in data types and expand them to a much larger set. There are four datatype modifiers in

C++, they are:

1. long

2. short

3. signed

4. unsigned

The above mentioned modifiers can be used along with built in data types to make them more

precise and even expand their range.

Remember, below mentioned are some important points you must know about the modifiers:

 enum day(mon, tues, wed, thurs, fri) d;long and short modify the maximum and

minimum values that a data type will hold.

 A plain int must have a minimum size of short.

 Size hierarchy : short int < int < long int

 Size hierarchy for floating point numbers is : float < double < long double

 long float is not a legal type and there are no short floating point numbers.

 Signed types includes both positive and negative numbers and is the default type.

 Unsigned, numbers are always without any sign, that is always positive.

3.3 Variables?

Variable are used in C++, where we need storage for any value, which will change in

program. Variable can be declared in multiple ways each with different memory

requirements and functioning. Variable is the name of memory location allocated by

the compiler depending upon the data type of the variable (Figure 3.1).

Figure 3.1 Variable

3.3.1 Basic types of Variables

Each variable while declaration must be given a datatype, on which the memory assigned to

the variable depends. Following are the basic types of variables.

37

Declaration and Initialization

Variable must be declared before they are used. Usually it is preferred to declare them at the

starting of the program, but in C++ they can be declared in the middle of program too, but

must be done before using them.

For example:

int i; // declared but not initialised char c;

int i, j, k; // Multiple declaration

Initialization means assigning value to an already declared variable, int i; // declaration

i = 10; // initialization

Initialization and declaration can be done in one single step also, int i=10; //initialization and

declaration in same step

int i=10, j=11;

If a variable is declared and not initialized by default it will hold a garbage value. Also, if a

variable is once declared and if try to declare it again, we will get a compile time error.

int i,j;

i=10;j=20;

int j=i+j; //compile time error, cannot redeclare a variable in same scope

3.3.2 Scope of Variables

All the variables have their area of functioning, and out of that boundary they don't hold their

value, this boundary is called scope of the variable. For most of the cases its between the curly

braces,in which variable is declared that a variable exists, not outside it. We will study the

storage classes later, but as of now, we can broadly divide variables into two main types,

 Global Variables

 Local variables

bool

for variable to store bloolean values (true or

false)

char

for variables to store character types

int

for variables with integral values

float and double are also type for variables with large

and floating point values

38

Global variables

Global variables are those, which ar once declared and can be used throughout the lifetime of

the program by any class or any function. They must be declared outside the main() function. If

only declared, they can be assigned different values at different time in program lifetime. But

even if they are declared and initialized at the same time outside the main() function, then also

they can be assigned any value at any point in the program.

For example: Only declared, not initialized

include <iostream>

using namespace std;

int x; // Global variable declared

int main()

{

x=10; // Initialized once

cout <<"first value of x = "<< x;

 x=20; // Initialized again

cout <<"Initialized again with value = "<< x;

}

Local Variables

Local variables are the variables which exist only between the curly braces, in which its

declared. Outside that they are unavailable and leads to compile time error.

Example :

include <iostream>

using namespace std;

int main()

{

int i=10;

if(i<20) // if condition scope starts

{

int n=100; // Local variable declared and initialized

} // if condition scope ends

39

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

cout << n; // Compile time error, n not available here

}

3.4 C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class, module, or any other user-

defined item. An identifier starts with a letter A to Z or a to z or an underscore (_) followed

by zero or more letters, underscores, and digits (0 to 9).

C++ does not allow punctuation characters such as @, $, and % within identifiers. C++ is a

case-sensitive programming language. Thus, Manpower and manpower are two different

identifiers in C++.

Here are some examples of acceptable identifiers −

3.5 C++ Keywords

The following list shows the reserved words in C++. These reserved words may not

be used as constant or variable or any other identifier names (Figure 3.2).

Figure 3.2 C++ Keywords

A few characters have an alternative representation, called a trigraph sequence. A trigraph is a

three-character sequence that represents a single character and the sequence always starts

40

with two question marks.

Trigraphs are expanded anywhere they appear, including within string literals and character

literals, in comments, and in preprocessor directives.

Following are most frequently used trigraph sequences −

All the compilers do not support trigraphs and they are not advised to be used because of their

confusing nature.

3.6 Whitespace in C++

A line containing only whitespace, possibly with a comment, is known as a blank line, and

C++ compiler totally ignores it (Figure 3.3).

Figure 3.3 Whitespaces in C++

Whitespace is the term used in C++ to describe blanks, tabs, newline characters and comments.

Whitespace separates one part of a statement from another and enables the compiler to

identify where one element in a statement, such as int, ends and the next element begins.

Statement 1

 int age;

In the above statement there must be at least one whitespace character (usually a space)

between int and age for the compiler to be able to distinguish them.

Statement 2

41

{

cout << "Hello World"; // prints Hello World

return 0;

}

x = y;

y = y + 1;

add(x, y);

 fruit = apples + oranges; // Get the total fruit

In the above statement 2, no whitespace characters are necessary between fruit and

=, or between = and apples, although you are free to include some if you wish for readability

purpose.

3.7 Understand Statement

Semicolons and Blocks in C++

While writing the program in C++, the semicolon is used as a statement terminator. That is,

each individual statement must be ended with a semicolon. It indicates the end of one logical

entity. For example, following are three different statements −

A block is a set of logically connected statements that are surrounded by opening and

closing braces. For example −

In C++ does not recognize the end of the line as a terminator. For this reason, it does not matter

where you put a statement in a line. For example −

is the same as

x = y; y = y + 1; add(x, y);

3.8 Summary

In this lesson, we discussed the concept and type of constructor and destructor. All the

operators that can be overloaded. Even after writing operator overloaded functions, the

precedence of operators remains unchanged. The '++' & '--' operators can be used as Postfix or

Prefix operators. So, separate functions overloading them for both the different applications

x = y;

y = y + 1;

add(x, y);

42

have been shown. we are of a view that Private data of a class can be accessed only in

member functions of that class.

3.9 Self Assessment Questions

Q.1. What is the use of a constructor function in a class? Give a suitable example of a

constructor function in a class.

Q.2. Design a class having the constructor and destructor functions that should display the

number of object being created or destroyed of this class type.

Q. 3. Write a C++ program, to find the factorial of a number using a constructor and a

destructor (generating the message “you have done it”)

Q. 4. Define a class “string” with members to initialize and determine the length of the

string. Overload the operators '+' and '+=' for the class “string”.

43

Chapter 4

Function in C++

Objective:

At the end of this session students shall be learning:

 Introduction to the concept of Functions,

 Passing Information-Parameters,

 Default Arguments,

 Constant Arguments,

 Function Overloading,

 Inline Functions,

 Recursive Functions

Structure:

4.1. Introduction to Function,

4.2. Function definition and declaration

4.3. Arguments to a Function,

4.4. Calling Functions,

4.5. Inline Function,

4.6. Scope rules of function and variable

4.7. Summary

4.8. Self Assessment Questions

4.1. Introduction to the concept of Functions.

Functions are the building blocks of C++ programs where all the program activity occurs.

Function is a collection of declarations and statements.

4.1.1. Need for a Function

Monolithic program (a large single list of instructions) becomes difficult to understand.

For this reason functions are used. A function has a clearly defined objective (purpose) and a

clearly defined interface with other functions in the program. Reduction in program size is

another reason for using functions. The functions code is stored in only one place in memory,

even though it may be executed as many times as a user needs.

44

The following program illustrates the use of a function:

//to display general message using function #include<iostream.h>

include<conio.h> void main()

{

void disp(); //function prototype clrscr(); //clears the screen disp(); //function call

getch(); //freeze the monitor

}

//function definition void disp()

{

cout<<”Welcome to the GJU of S&T\n”; cout<<”Programming is nothing but logic

implementation”;

}

In this Unit, we will also discuss Class, as important Data Structure of C++. A Class is the

backbone of Object-Oriented Computing. It is an abstract data type. We can declare and

define data as well as functions in a class. An object is a replica of the class to the exception

that it has its own name. A class is a data type and an object is a variable of that type. Classes and

objects are the most important features of C++. The class implements OOP features and ties

them together.

4.2 FUNCTION DEFINITION AND DECLARATION

In C++, a function must be defined prior to it's use in the program. The function definition

contains the code for the function. The function definition for display_message () in program

is given below the main () function. The general syntax of a function definition in C++ is

shown below.Type name_of_the_function (argument list)

{

//body of the function

}

Here, the type specifies the type of the value to be returned by the function. It may be any valid

C++ data type. When no type is given, then the compiler returns an integer value from the

function.

Name_of_the_function is a valid C++ identifier (no reserved word allowed) defined by the user

and it can be used by other functions for calling this function.

Argument list is a comma separated list of variables of a function through which the function

may receive data or send data when called from other function.

45

The above function add () can also be coded with the help of arguments of parameters as shown

below:

//function definition add()

void add(int a, int b) //variable names are must in definition

{

int sum; sum=a+b;

cout<<”\n The sum of two numbers is “<<sum<<endl;

}

4.3. ARGUMENTS TO A FUNCTION

Arguments(s) of a function is (are) the data that the function receives when called/invoked

from another function.

4.3.1 PASSING ARGUMENTS TO A FUNCTION

It is not always necessary for a function to have arguments or parameters. The functions add (

) and divide () in program 6.3 did not contain any arguments. The following example (Figure

4.1) illustrates the concept of passing arguments to function SUMFUN ():

// demonstration of passing arguments to a function #include<iostream.h>

void main ()

{

float x,result; //local variables

int N;

Figure 4.1 Passing Arguments to a function

46

4.3.2 DEFAULT ARGUMENTS

C++ allows a function to assign a parameter the default value in case no argument for that

parameter is specified in the function call. For example.

// demonstrate default arguments function

 #include<iostream.h>

int calc(int U)

{

If (U % 2 = = 0)

return U+10;

Else return U+2

}

Void pattern (char M, int B=2)

{

for (int CNT=0;CNT<B; CNT++)

cout<calc(CNT) <<M; cout<<endl;

}

Void main ()

{

Pattern('');

Pattern ('#',4)'

Pattern (;@;,3);

}

4.3.3 CONSTANTARGUMENTS

A C++ function may have constant arguments(s). These arguments(s) is/are treated as

constant(s). These values cannot be modified by the function.

For making the arguments(s) constant to a function, we should use the keyword const as given

below in the function prototype :

Void max(const float x, const float y, const float z);

Here, the qualifier const informs the compiler that the arguments(s) having const should not

be modified by the function max (). These are quite useful when call by reference method is

used for passing arguments.

47

4.4 CALLING FUNCTIONS

In C++ programs, functions with arguments can be invoked by :

(a) Value

(b) Reference

4.4.1. Call by Value: -

In this method the values of the actual parameters (appearing in the function call) are copied into

the formal parameters (appearing in the function definition), i.e., the function creates its own

copy of argument values and operates on them. The following program illustrates this

concept :

//calculation of compound interest using a function #include<iostream.h>

#include<conio.h> #include<math.h> //for pow()function Void main()

{

Float principal, rate, time; //local variables

Void calculate (float, float, float); //function prototype clrscr(); Cout<<”\nEnter the following

values:\n”; Cout<<”\nPrincipal:”;

Cin>>principal; Cout<<”\nRate of interest:”; Cin>>rate;

Cout<<”\nTime period (in yeaers) :”; Cin>>time; Calculate (principal, rate, time); //function

call Getch ();

}

//function definition calculate() Void calculate (float p, float r, float t)

{

Float interest; //local variable Interest = p (pow((1+r/100.0),t))-p; Cout<<”\nCompound

interest is : “<<interest; }

4.4.2. Call by Reference: -

A reference provides an alias – an alternate name – for the variable, i.e., the same variable's

value can be used by two different names : the original name and the alias name.

In call by reference method, a reference to the actual arguments(s) in the calling program is

passed (only variables). So the called function does not create its own copy of original

value(s) but works with the original value(s) with different name. Any change in the original

data in the called function gets reflected back to the calling function.

48

It is useful when you want to change the original variables in the calling function by the called

function.

//Swapping of two numbers using function call by reference #include<iostream.h>

#include<conio.h> void main()

{

clrscr();

int num1,num2;

void swap (int &, int &); //function prototype cin>>num1>>num2; cout<<”\nBefore

swapping:\nNum1: “<<num1; cout<<endl<<”num2: “<<num2;

swap(num1,num2); //function call cout<<”\n\nAfter swapping : \Num1: “<<num1;

cout<<endl<<”num2: “<<num2; getch();

}

//function fefinition swap() void swap (int & a, int & b)

{

int temp=a; a=b; b=temp;

}

4.5 INLINE FUNCTIONS:

These are the functions designed to speed up program execution. An inline function is expanded

(i.e. the function code is replaced when a call to the inline function is made) in the line where

it is invoked. You are familiar with the fact that in case of normal functions, the compiler have

to jump to another location for the execution of the function and then the control is returned back

to the instruction immediately after the function call statement. So execution time taken is

more in case of normal functions. There is a memory penalty in the case of an inline function.

The system of inline function is as follows :

 inline function_header

{

body of the function

}

For example,

//function definition min()

{ inline void min (int x, int y) cout<< (x < Y? x : y);

}Void main()

{

49

int num1, num2;

cout<<”\Enter the two intergers\n”; cin>>num1>>num2;

min (num1,num2; //function code inserted here

}

An inline function must be defined before it's invoked, as demonstrated in the example above.

In this case, the `min()` function, being inline, won't be directly called during execution;

instead, its code will be inserted into `main()` and then compiled.

However, if the inline function's size is substantial, it can incur a significant memory penalty,

diminishing its usefulness. In such scenarios, employing a normal function is more practical.

Inlining is ineffective under the following conditions:

1. Functions returning values and containing a loop, switch, or goto statement.

2. Functions lacking return values but containing a return statement.

3. Functions incorporating static variables.

4. Recursive inline functions, where a function is defined in terms of itself.

Advantages of Inline Functions:

1. Minimized Call Overhead: Removes the overhead linked to function calls, such as

stack manipulation.

2. Boosted Performance: Enhances execution speed for small, frequently invoked

functions.

3. Direct Code Optimization: Enables the compiler to optimize the inline code directly.

4. Maintained Readability: Preserves code clarity while avoiding repetitive code blocks.

5. Encourages Modular Design: Promotes the use of small, modular functions without

the performance costs of frequent calls.

4.6 SCOPE RULES OF FUNCTIONS AND VARIABLES

The scope of an identifier is that part of the C++ program in which it is accessible. Generally,

users understand that the name of an identifier must be unique. It does not mean that a name

can't be reused. We can reuse the name in a program provided that there is some scope by

50

which it can be distinguished between different cases or instances.

In C++ there are four kinds of scope as given below :

1. “Local Scope”

2. “Function Scope”

3. “File Scope”

4. “Class Scope”

4.6.1. Local Scope:- A block in C++ is enclosed by a pair of curly braces i.e., '{' and '}'. The

variables declared within the body of the block are called local variables and can be used only

within the block. These come into existence when the control enters the block and get

destroyed when the control leaves the closing brace. You should note the variable(s) is/are

available to all the enclosed blocks within a block.

For example, int x=100;

{ cout<<x<<endl; Int x=200;

{

cout<<x<<endl; int x=300;

{

cout<<x<<endl;

}

cout<<x<<endl;

}

4.6.2. Function Scope: It pertains to the labels declared in a function i.e., a label can be

used inside the function in which it is declared. So we can use the same name labels in

different functions.

For example,

“//function definition add1() void add1(int x,int y,int z)

{

int sum = 0; sum = x+y+z; cout<<sum;

}

//function definition add2() coid add2(float x,float y,float z)

{

Float sum = 0.0; sum = x+y+z; cout<<sum;

}”

51

Here the labels x, y, z and sum in two different functions add1 () and add2 () are declared

and used locally.

4.6.3. File Scope: If the declaration of an identifier appears outside all functions, it is

available to all the functions in the program and its scope becomes file scope. For Example,

int x;

void square (int n)

{

cout<<nn;

}

void main ()

{

int num; cout<<x<<endl; cin>>num;

square(num);

…………...........

}

Let us the declarations of variable x and function square () are outside all the functions so

these can be accessed from any place inside the program. Such variables/functions are called

global.

4.6.4. Class Scope: In C++, every class maintains its won associated scope. The class

members are said to have local scope within the class. If the name of a variable is reused by a

class member, which already has a file scope, then the variable will be hidden inside the class.

Member functions also have class scope.

Inline Functions:- An inline function is expanded in the line where it is invoked.

Member Function:- Private means that they can be accessed only by the functions within the

class.

Classes:- When you create the definition of a class you are defining the attributes and behavior of

a new type.

Objects:- Declaring a variable of a class type creates an object. You can have many variables

of the same type (class).

4.7. Summary

In this Chapter, we have discussed the concept of function in C++, its declaration and definition.

52

we have also discussed the concept of class, its declaration and definition. It so explained the

ways for creating objects, accessing the data members of the class. We have seen the way to

pass objects as arguments to the functions with call by value and call by reference.

4.8 Self Assessment Questions

1 What are the advantages of using functions in programming?

2 How do you pass parameters by reference in C++ and what are its benefits?

3 Can you explain with an example how default arguments work in functions?

4 What is the purpose of constant arguments and when should they be used?

5 How does function overloading improve code readability and usability?

6 When should you use inline functions and what are the potential downsides?

7 Can you describe a scenario where using a recursive function is more beneficial than

an iterative approach?

53

Chapter 5

Classes and Objects

Objective:

At the end of this session students shall be learning:

 Introduction Class,

 Understand the Member Functions,

 Making an Outside Function Inline,

 Nesting Of Member Functions ,

 Private Member Function,

 Arrays within a Class,

 Memory Allocation for Objects,

 Arrays of Objects,

 Objects as Function Arguments, Returning Objects,

 Const Member Function,

 Static Class Members, Pointer to Members,

 Local classes,

 Friend Functions, Unions and classes,

 Object Composition and Delegation

Structure-

5.1. Introduction of a Class,

5.2. Member Functions definition

5.3. Declaration of Objects,

5.4. Friend Classes ,

5.5. Drawbacks of Preprocessors

5.6. Inline function is C++,

5.7. Important point of Inline function,

5.8. Getter and Setter function in C++,

5.9. Limitation of Inline Functions,

5.10. Forwards References in C++

5.11. Function overloading in C++

5.12. Summary

5.13 Self Assessment Questions

54

5.1. Introduction of a Class

A class in C++ combines related data and functions together. It makes a data type which is

used for creating objects of this type.

Classes represent real world entities that have bothdata type properties (characteristics)

and associated operations (behavior).

The syntax of a class definition is shown below:

Class name_of _class

“{

: variable declaration; // data member

Function declaration; // Member Function (Method) protected: Variable declaration;

Function declaration;

public : variable declaration;

{

Function declaration;

};”

Here, the keyword class specifies that we are using a new data type and is followed by the class

name.

The body of the class has two keywords namely :

(i) “private” (ii) “public”

In C++, the keywords private and public are called access specifiers. The data hiding concept in

C++ is achieved by using the keyword private. Private data and functions can only be accessed

from within the class itself. Public data and functions are accessible outside the class also.

This is shown below (Figure 5.1):

55

Figure 5.1 Class

Data hiding not mean the security technique used for protecting computer databases. The

security measure is used to protect unauthorized users from performing any operation

(read/write or modify) on the data.

The data declared under Private section are hidden and safe from accidental manipulation.

Though the user can use the private data but not by accident.

The functions that operate on the data are generally public so that they can be accessed

from outside the class but this is not a rule that we must follow.

5.2. Member Function Definition

The specification of a class is divided into two parts:

1. Class Definition: This includes the declaration of data members and member functions.

2. Class Method Definitions: This involves writing the actual code for the member functions

of the class.

Previously, we covered the syntax for defining a class along with an example. In C++,

member functions can be implemented in two distinct ways:

- Within the Class Definition: Coding the member functions directly inside the class

declaration.

- Outside the Class Definition: Implementing the member functions outside the class

declaration using the scope resolution operator (::).

The code of the function is same in both the cases, but the function header is different as

explained below:

56

5.2.1. Inside Class Definition:

When a member function is defined inside a class, we do not require to place a membership

label along with the function name. We use only small functions inside the class definition and

such functions are known as inline functions.

In case of inline function the compiler inserts the code of the body of the function at the place

where it is invoked (called) and in doing so the program execution is faster but memory penalty

is there.

5.2.2. Outside Class Definition Using Scope Resolution Operator (::) :

In this case the function's full name (qualified_name) is written as shown:

Name_of_the_class :: function_name

The syntax for a member function definition outside the class definition is:

return_type name_of_the_class::function_name (argument list)

{

body of function

}

Here the operator::known as scope resolution operator helps in defining the member function

outside the class. Earlier the scope resolution operator(::)was ised om situations where a

global variable exists with the same name as a local variable and it identifies the global variable.

5.3. Declaration Of Objects As Instances Of A Class

The objects of a class are declared after the class definition. One must remember that a class

definition does not define any objects of its type, but it defines the properties of a class. For

utilizing the defined class, we need variables of the class type. For example,

Largest ob1,ob2; //object declaration will create two objects ob1 and ob2 of largest class type.

As mentioned earlier, in C++ the variables of a class are known as objects. These are declared

like a simple variable i.e., like fundamental data types.

In C++, all the member functions of a class are created and stored when the class is defined and

this memory space can be accessed by all the objects related to that class.

Memory space is allocated separately to each object for their data members. Member variables

store different values for different objects of a class.

57

5.3.1. Accessing Members From Object(S)

After defining a class and creating a class variable i.e., object we can access the data members

and member functions of the class. Because the data members and member functions are parts of

the class, we must access these using the variables we created. For functions are parts of the

class, we must access these using the variable we created. For Example,

Class student

“{

private:

char reg_no[10];

char name[30];

int age;

char address[25];

public :

void init_data()

{

- ---------------------------------- //body of function

- - - - -

}

void display_data()

}

};”

student ob; //class variable (object) created

- - - - -

- - - - -

Ob.init_data(); //Access the member function ob.display_data(); //Access the member

function - - - - -

- - - - -

Here, the data members can be accessed in the member functions as these have private

scope, and the member functions can be accessed outside the class i.e., before or after the main()

function.

5.3.2. Static Class Members

Data members and member functions of a class in C++, may be qualified as static. We can have

58

static data members and static member function in a class.

Static Data Member: It is generally used to store value common to the whole class. The static

data member differs from an ordinary data member in the following ways:

(i) Only a single copy of the static data member is used by all the objects.

(ii) It can be used within the class but its lifetime is the whole program. For making a data

member static, we require :

(a) Declare it within the class.

(b) Define it outside the class. For example

Class student

“{

Static int count; //declaration within class

};”

The static data member is defined outside the class as :

“int student :: count;” //definition outside class The definition outside the class is a must.

We can also initialize the static data member at the time of its definition as: “int student :: count =

0;”

If we define three objects as : student obj1, obj2, obj3;

Static Member Function: A static member function can access only the static members of a

class. We can do so by putting the keyword static before the name of the function while

declaring it for example,

Class student

“{

Static int count;

public :

static void showcount (void) //static member function

{

Cout<<”count=”<<count<<”\n”;

59

}

int student ::count=0;

};”

Here we have put the keyword static before the name of the function shwocount ().

In C++, a static member function fifers from the other member functions in the following

ways:

(i) Only “static members (functions or variables)” of the same class can be accessed by

a static member function.

(ii) It is called by using the name of the class rather than an object as given below:

Name_of_the_class :: function_name For example,

student::showcount();

5.4. Friend Classes

In C++ , a class can be made a friend to another class. For example, class TWO; // forward

declaration of the class TWO

class ONE

“{

………………………

…………….

public:

……………..

……………..

friend class TWO; // class TWO declared as friend of class ONE

};”

Now from class TWO , all the member of class ONE can be accessed.

Friend functions are actually not class member function. Friend functions are made to give

privateaccess to non-class functions. You can declare a global function as friend, or a member

function of other class as friend.

For example:

class WithFriend

“{

int i; public:

friend void fun(); // global function as friend

60

};

void fun()

{

WithFriend wf;

wf.i=10; // access to private data member cout << wf.i;

}

int main()

{

fun(); //Can be called directly

}”

Hence, friend functions can access private data members by creating object of the class.

Similarly we can also make function of some other class as friend, or we can also make an

entire class as friend class.

class Other

{

void fun();

};

class WithFriend

{

private:

int i; public:

void getdata(); // Member function of class WithFriend

// making function of class Other as friend here friend void Other::fun();

// making the complete class as friend friend class Other;

};

When we make a class as friend, all its member functions automatically become friend

functions. Friend Functions is a reason, why C++ is not called as a pure Object Oriented

language. As such, it violates the concept of Encapsulation.

All the member functions defined inside the class definition are by default declared as Inline.

Let us have some background knowledge about these functions.

You must remember Preprocessors from C language. Inline functions in C++ do the same thing

what Macros did in C language. Preprocessors/Macros were not used in C++ because they had

some drawbacks.

61

5.5. Drawbacks of Preprocessors/Macros in C++

In Macro, we define certain variable with its value at the beginning of the program, and

everywhere inside the program where we use that variable, its replaced by its value on

compilation.

1) Problem with spacing:

Let us try to understand this problem using an example,

#define G (y) (y+1)

Here we have defined a Macro with name G(y), which is to be replaced by its value, that is

(y+1)during compilation. But, what actually happens when we call G(y),

G(1) // Macro will replace it

the preprocessor will expand it like,

(y) (y+1) (1)

You must be thinking why this happened, this happened because of the spacing in Macro

definition. Hence big functions with several expressions can never be used with macro, so

Inline functions were introduced in C++.

2) Complex Argument Problem

In some cases such Macro expressions work fine for certain arguments but when we use

complex arguments problems start arising.

#define MAX(x,y) x>y?1:0 Now if we use the expression,

if(MAX(a&0x0f, 0x0f)) // Complex Argument Macro will Expand to, if(a&0x0f > 0x0f ? 1:0)

Here precedence of operators will lead to problem, because precedence of & is lower than that of

>, so the macro evaluation will surprise you. This problem can be solved though using

parenthesis, but still for bigger expressions problems will arise.

3) No way to access Private Members of Class

With Macros, in C++ you can never access private variables, so you will have to make those

members public, which will expose the implementation.

class Y

{

62

int x; public :

#define VAL(Y::x) // Its an Error

}

5.6. Inline Functions in C++

Inline functions are actual functions, which are copied everywhere during compilation, like

preprocessor macro, so the overhead of function calling is reduced. All the functions defined

inside class definition are by default inline, but you can also make any non-class function inline

by using keyword inline with them.

For an inline function, declaration and definition must be done together. For example, inline void

fun(int a)

{

return a++;

}

5.7. Some Important points about Inline Functions:

1. We must keep inline functions small, small inline functions have better efficiency.

2. Inline functions do increase efficiency, but we should not make all the functions inline.

Because if we make large functions inline, it may lead to code bloat, and might affect the

speed too.

3. Hence, it is adviced to define large functions outside the class definition using scope

resolution ::operator, because if we define such functions inside class definition, then

they become inline automatically.

4. Inline functions are kept in the Symbol Table by the compiler, and all the call for such

functions is taken care at compile time.

5.8. Getter and Setter Functions in C++

We have already studied this in the topic accessing private data variables inside a class. We

use acce class Auto

{

// by default private int price;

public:

// getter function for variable price int getPrice()

{

63

return price;

}

// setter function for variable price void setPrice(int x)

{

i=x;

}

};ss functions, which are inline to do so.

Here getPrice() and setPrice() are inline functions, and are made to access the private data

members of the class Auto. The function getPrice(), in this case is called Getter or Accessor

function and the function setPrice() is a Setter or Mutator function. There can be overlaoded

Accessor and Mutator functions too. We will study overloading functions in next topic.

5.9. Limitations of Inline Functions:

1. Large Inline functions cause Cache misses and affect performance negatively.

2. Compilation Overhead: Copying the function body everywhere during compilation

introduces overhead. While this is negligible for small programs, it can significantly impact

performance in larger codebases.

3. Function Address Requirement: When the address of a function is needed in a program, the

compiler cannot inline such functions. This is because inlining does not allocate storage for the

function, instead keeping it in the symbol table, which precludes the assignment of a physical address.

5.10. Understanding Forward References in C++

All the inline functions are evaluated by the compiler, at the end of class declaration. class

ForwardReference

{

int i; public:

// call to undeclared function int f()

{

return g()+10;

}

int g()

{

return i;

64

}

};

int main()

{

ForwardReference fr; fr.f();

}

You must be thinking that this will lead to compile time error, but in this case it will work,

because no inline function in a class is evaluated until the closing braces of class declaration.

5.11. Function Overloading in C++

If any class have multiple functions with same names but different parameters then they are

said to be overloaded. Function overloading allows you to use the same name for different

functions, to perform, either same or different functions in the same class.

Function overloading is usually used to enhance the readability of the program. If you have to

perform one single operation but with different number or types of arguments, then you can

simply overload the function.

5.11.1. Different ways to Overload a Function

1. By changing number of Arguments.

2. By having different types of argument.

5.11.2. Function Overloading: Different Number of Arguments

In this type of function overloading we define two functions with same names but different

number of parameters of the same type. For example, in the below mentioned program we

have made two sum() functions to return sum of two and three integers.

// first definition int sum (int x, int y)

{

cout << x+y;

}

// second overloaded defintion int sum(int x, int y, int z)

{

cout << x+y+z;

}

Here sum() function is said to overloaded, as it has two definition, one which accepts two

65

arguments and another which accepts three arguments. Which sum() function will be called,

depends on the number of arguments.

int main()

{

// sum() with 2 parameter will be called sum (10, 20);

//sum() with 3 parameter will be called sum(10, 20, 30);

} 30

60

5.11.3. Function Overloading: Different Datatype of Arguments

In this type of overloading we define two or more functions with same name and same

number of parameters, but the type of parameter is different. For example in this program, we

have two sum() function, first one gets two integer arguments and second one gets two double

arguments.

// first definition int sum(int x, int y)

{

cout<< x+y;

}

// second overloaded defintion double sum(double x, double y)

{

cout << x+y;

}

int main()

{

sum (10,20); sum(10.5,20.5);

} 30

31.0

When we mention a default value for a parameter while declaring the function, it is said to be

as default argument. In this case, even if we make a call to the function without passing any

value for that parameter, the function will take the default value specified.

sum(int x, int y=0)

{

cout << x+y;

}

66

Here we have provided a default value for y, during function definition. int main()

{

sum(10);

sum(10,0);

sum(10,10);

}

10 10 20

First two function calls will produce the exact same value for the third function call, y will take

10 as value and output will become 20. By setting default argument, we are also overloading the

function. Default arguments also allow you to use the same function in different situations

just like function overloading.

5.11.5. Rules for using Default Arguments

1. Only the last argument must be given default value. You cannot have a default

argument followed by non-default argument.

2. sum (int x,int y);

3. sum (int x,int y=0);

4. sum (int x=0,int y); // This is Incorrect

5. If you default an argument, then you will have to default all the subsequent

arguments after that.

6. sum (int x,int y=0);

7. sum (int x,int y=0,int z); // This is incorrect

8. sum (int x,int y=10,int z=10); // Correct

9. You can give any value a default value to argument, compatible with its datatype.

5.11.6. Function with Placeholder Arguments

When arguments in a function are declared without any identifier they are called placeholder

arguments. void sum (int, int);

Such arguments can also be used with default arguments. void sum (int, int=0);

5.12. Summary.

In this chapter, you have been exposed to the concepts of base class and derived classes. A

derived class is a class which includes the member of another class. This concept is also known

as inheritance. When a derived class has more than one direct base class, then it is called

67

Multiple Inheritance. There were three types of inheritance. We can also declare classes as

members of another class. We have also touched on the concept of polymorphism.

5.13. Self Assessment Questions:

1. What are Functions? Explain different Functions in C++.

2. What is 'Calling a Function'? Explain different types of calling a function.

3. What is a Classes and Objects? Explain the procedure for the same.

4. What is a Constructors? What is a Destructor? Illustrate with example Constructor and

destructions.

5. Illustrate with example Access Control in C++.

6. Illustrate with example Calling Class Member Function in C++.

7. Explain following types of Class Member Functions in C++:

i. Simple functions

ii. Static functions

iii. Const functions

iv. Inline functions

v. Friend functions

8. Drawbacks of Preprocessors/Macros in C++.

9. what is Inline Functions? Explain the Important points about Inline Functions.

10. What is understood by Understanding Forward References in C++?

11. Explain with illustration the Function Overloading in C++.

12. Illustrate with Different ways to Overload a Function

i. By changing number of Arguments.

ii. By having different types of argument.

13. Explain the types of Constructors in C++

i. Default Constructor

ii. Parameterized Constructor

iii. Copy Constructor

68

Chapter 6

Constructor and Destructor

Objective:

At the end of this session students shall be learning:

 Understand the concept of Constructor

 Multiple Constructors in a class,

 Constructor with Default Arguments,

 Dynamic Initialization of Objects,

 Const Object,

 Destructor

Structure:

6.1. Introduction to Constructor

6.2. Declaration and definition Constructor

6.3. Type of Constructor

6.4. Constructors and Primitive types

6.5. Declaration and definition destructor

6.6. Special Characteristics of

6.7. Summary

6.8. Self Assessment Questions

6.1 Introduction

A constructor (having the same name as that of the class) is a member function which is

automatically used to initialize the objects of the class type with legal initial values.

Destructors are the functions that are complimentary to constructors. These are used to de-

initialize objects when they are destroyed. A destructor is called when an object of the class

goes out of scope, or when the memory space used by it is de allocated with the help of

delete operator.

Operator overloading is one of the most exciting features of C++. It is helpful in

enhancement of the power of extensibility of C++ language. Operator overloading redefines

the C++ language. User defined data types are made to behave like built-in data types in C++.

Operators +, . <=, += etc. can be given additional meanings when applied on user defined data

types using operator overloading. The mechanism of providing such an additional meaning

to an operator is known as operator overloading in C++.

6.2 Declaration and Definition of a Constructor

69

It is defined like other member functions of the class, i.e., either inside the class definition or

outside the class definition.

For example, the following program illustrates the concept of a constructor :

//To demonstrate a constructor

#include <iostram.h>

 #include <conio.h>

Class rectangle

{ private :

float length, breadth; public:

rectangle ()//constructor definition

{

//displayed whenever an object is created

cout<<”I am in the constructor”; length-10.0; breadth=20.5;

}

float area()

{

return (lengthbreadth);

}

};

void main()

{

clrscr();

rectangle rect; //object declared

cout<<”\nThe area of the rectangle with default parametis:”<<rect.area()<<”sq.units\n”;

getch();

}

6.3 Type Of Constructor

There are different types of constructors in C++.

6.3.1 Overloaded Constructors

70

Besides performing the role of member data initialization, constructors are no different from

other functions. This included overloading also. In fact, it is very common to find

overloaded constructors. For example, consider the following program with overloaded

constructors for the figure class:

“//Illustration of overloaded constructors

//construct a class for storage of dimensions of circles.

//triangle and rectangle and calculate their area

#include<iostream.h>

#include<conio.h>

 #include<math.h>

 #include<string.h> //for strcpy()

 Class figure

{

Private:

Float radius, side1,side2,side3; //data members Char shape[10];

Public:

figure(float r) //constructor for circle

{

radius=r;

strcpy (shape, “circle”);

}

figure (float s1,float s2) //constructor for rectangle strcpy

{

Side1=s1;

Side2=s2;

Side3=radius=0.0; //has no significance in rectangle strcpy(shape,”rectangle”);

}

Figure (float s1, floats2, float s3) //constructor for triangle

{

side1=s1; side2=s2; side3=s3; radius=0.0;

strcpy(shape,”triangle”);

71

}

void area() //calculate area

{

float ar,s; if(radius==0.0)

{

if (side3==0.0) ar=side1side2; else

ar=6.14radiusradius;

cout<<”\n\nArea of the “<<shape<<”is :”<<ar<<”sq.units\n”;

}

};

Void main()

{

Clrscr();

Figure circle(10.0); //objrct initialized using constructor Figure

rectangle(15.0,20.6);//objrct initialized using onstructor

Figure Triangle(6.0, 4.0, 5.0); //objrct initialized using constructor Rectangle.area();

Triangle.area(); Getch();//freeze the monitror”

6.3.2 Copy Constructor

It is of the form classname (classname &) and used for the initialization of an object form

another object of same type. For example,

Class fun

“{

Float x,y;

Public:

Fun (floata,float b)//constructor

{x = a; y = b;

}

Fun (fun &f) //copy constructor {cout<<”\ncopy constructor at work\n”; X = f.x; Y = f.y;

}

Void display (void)

{

72

{

Cout<<””<<y<<end1;

}

};”

Here we have two constructors, one copy constructor for copying data value of a fun object to

another and other one a parameterized constructor for assignment of initial values given.

6.3.3 Dynamic Initialization of Objects

In C++, the class objects can be initialized at run time (dynamically). We have the flexibility

of providing initial values at execution time. The following program illustrates this concept:

//Illustration of dynamic initialization of objects #include <iostream.h>

#include <conio.h> Class employee

{

Int empl_no; Float salary; Public:

Employee() //default constructor

{}

Employee(int empno,float s)//constructor with arguments { Empl_no=empno;

Salary=s;

}

Employee (employee &emp)//copy constructor

{

Cout<<”\ncopy constructor working\n”; Empl_no=emp.empl_no; Salary=emp.salary;

}

Void display (void)

{

Cout<<”\nEmp.No:”<<empl_no<<”salary:”<<salary<<end1;

}

};

Void main()

{

int eno; float sal; clrscr();

cout<<”Enter the employee number and salary\n”; cin>>eno>>sal;

73

employee obj1(eno,sal);//dynamic initialization of object cout<<”\nEnter the employee

number and salary\n”; cin>eno>>sal; employee obj2(eno,sal); //dynamic initialization of

object obj1.display(); //function called

employee obj3=obj2; //copy constructor called obj6.display();

getch();

}

6.4. Constructors and Primitive Types

In C++, like derived type, i.e. class, primitive types (fundamental types) also have

their constructors. Default constructor is used when no values are given but when we

given initial values, the initialization take place for newly created instance.

For example,

float x,y; //default constructor used

int a(10), b(20); //a,b initialized with values 10 and 20 float i(2.5),

j(7.8); //I,j, initialized with valurs 2.5 and 7.8

6.6.5 Constructor with Default Arguments

In C++, we can define constructor s with default arguments. For example, The

following code segment shows a constructor with default arguments: Class add

“{

Private:

Int num1, num2,num3; Public:

Add(int=0,int=0); //Default argument constructor //to reduce the number of

constructors Void enter (int,int);

Void sum();

Void display();

};”

//Default constructor definition add::add(int n1, int n2)

“{

num1=n1; num2=n2;

num3=n0;

}

Void add ::sum()

{

Num3=num1+num2;

74

}

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}”

Now using the above code objects of type add can be created with no initial values,

one initial values or two initial values. For Example,

Add obj1, obj2(5), obj3(10,20);

Here, obj1 will have values of data members num1=0, num2=0 and num3=0

Obj2 will have values of data members num1=5, num2=0 and num3=0 Obj3 will

have values of data members num1=10, num2=20 and num3=0

If two constructors for the above class add are

Add::add() {} //default constructor

and add::add(int=0);//default argument constructor

Then the default argument constructor can be invoked with either two or one or no

parameter(s). Without argument, it is treated as a default constructor-using these two

forms together causes ambiguity. For example,

The declaration add obj;

is ambiguous i.e., which one constructor to invoke i.e.,

add :: add()

or add :: add(int=0,int=0)

so be careful in such cases and avoid such mistakes.

6.4 Special Characteristics Of Constructors

These have some special characteristics. These are given below:

(i) These are called automatically when the objects are created.

(ii) All objects of the class having a constructor are initialized before some use.

(iii) These should be declared in the public section for availability to all the functions.

(iv) Return type (not even void) cannot be specified for constructors.

(v) These cannot be inherited, but a derived class can call the base class constructor.

(vi) These cannot be static.

(vii) Default and copy constructors are generated by the compiler wherever required.

Generated constructors are public.

(viii) These can have default arguments as other C++ functions.

75

(ix) A constructor can call member functions of its class.

(x) An object of a class with a constructor cannot be used as a member of a union.

(xi) A constructor can call member functions of its class.

(xii) We can use a constructor to create new objects of its class type by using the syntax.

Name_of_the_class (expresson_list) For example,

Employee obj3 = obj2; // see program 10.5

Or even

Employee obj3 = employee (1002, 35000); //explicit call

(xiii) The make implicit calls to the memory allocation and deallocation operators new and

delete.

(xiv) These cannot be virtual.

6.5 Declaration and Definition of a Destructor

The syntax for declaring a destructor is :

-name_of_the_class()

{

}

So the name of the class and destructor is same but it is prefixed with a ~

(tilde). It does not take any parameter nor does it return any value. Overloading a destructor is

not possible and can be explicitly invoked. In other words, a class can have only one

destructor. A destructor can be defined outside the class. The following program illustrates

this concept :

//Illustration of the working of Destructor function

#include<iostream.h>

#include<conio.h> class add

{

private :

int num1,num2,num3; public :

add(int=0, int=0); //default argument constructor

//to reduce the number of constructors void sum();

void display();

~ add(void); //Destructor

};

//Destructor definition ~add()

76

Add:: ~add(void) //destructor called automatically at end of program

{

Num1=num2=num3=0;

Cout<<”\nAfter the final execution, me, the object has entered in the”

<<”\ndestructor to destroy myself\n”; }

“//Constructor definition add()

Add::add(int n1,int n2)

{num1=n1;

num2=n2; num3=0;

}

//function definition sum ()

Void add::sum()

{

num3=num1+num2;

}

//function definition display ()

Void add::display ()

{

Cout<<”\nThe sum of two numbers is “<<num3<<end1;

}”

void main()

“{

Add obj1,obj2(5),obj3(10,20): //objects created and initialized clrscr();

Obj1.sum(); //function call

Obj2.sum();

Obj6.sum();

cout<<”\nUsing obj1 \n”;

obj1.display(); //function call

cout<<”\nUsing obj2 \n”;

obj2.display();

cout<<”\nUsing obj3 \n”;

obj6.display();

}”

77

6.6 Special Characteristics of Destructors

Some of the characteristics associated with destructors are :

1. Automatic Execution: Destructors are invoked automatically when an object exits scope

or is explicitly deallocated.

2. Parameterless: Destructors cannot accept any parameters.

3. No Return Type: Destructors do not return any value.

4. Singular per Class: Each class is limited to a single destructor.

5. Non-Inheritable: Destructors do not get inherited in the conventional sense.

6. Resource Cleanup: Destructors handle the release of resources allocated to an object

during its lifecycle.

7. Destruction Order: In inheritance hierarchies, destructors are executed in the reverse

sequence of constructors.

8. Not Explicitly Callable: Destructors are not intended to be called directly by the user.

9. Exception Handling: Destructors are executed during stack unwinding when an

exception is thrown, ensuring resource release.

10. Chained Destruction: In derived classes, destructors invoke base class destructors in

sequence.

11. Consistency and Stability: Destructors help maintain resource management consistency

and prevent resource leaks, ensuring program stability.

6.7. Summary

In this chapter, we explored the concepts of constructors and destructors, detailing their

various types and roles within object-oriented programming. Additionally, we examined the

different operators that are eligible for overloading. It's crucial to note that even after defining

custom operator overloads, the intrinsic precedence rules of these operators remain

unaffected. We discussed how the increment (++) and decrement (--) operators can function

in both postfix and prefix forms. As a result, we demonstrated the necessity of defining

separate overload functions for each usage. Furthermore, we reiterated the principle that a

class's private data members can only be accessed through its member functions, ensuring

encapsulation and data integrity.

78

6.8. Self Assessment Questions

1. Explain the types of Constructors in C++

 Default Constructor, Parameterized Constructor, Copy Constructor

2. Example of how to make use Constructor and Destructor.

3. Define and illustrate the Static Keyword in C++:

 Static variable in functions, Static Class Objects

 Static member Variable in class, Static Methods in class

4. Difference between Reference and Pointer in C++.

5. Explain with example Copy Constructor in C++ :

 Shallow

 Deep

79

Chapter 7

Operator Overloading and Type Conversion

Objective:

At the end of this session students shall be learning:

 Introduction

 Concept of Overloading

 Unary Operators in C++,

 Overloading Binary Operators in C++,

 Limitations of Operator Overloading in C++

 This pointer concept,

 Overloading<<and>>Operators,

 Manipulation of String,

 Types Conversion

Structure:

7.1. Introduction to overloading

7.2. Types Conversion

7.3. Summary

7.4. Self Assessment Questions

7.1. Introduction to Overloading

Operator overloading is an important concept in C++. It is a type of polymorphism in which an

operator is overloaded to give user defined meaning to it. Overloaded operator is used to

perform operation on user-defined data type. For example '+' operator can be overloaded to

perform addition on various data types, like for Integer, String(concatenation) etc.

7.1.1. Operator Overloading Syntax

80

Almost any operator can be overloaded in C++. However there are few operator which

cannot be overloaded. Operator that are not overloaded are follows:

 “scope operator - ::”

 “size of”

 “member selector - .”

 “member pointer selector - ”

 “ternary operator - ?:”

7.1.2. Implementing Operator Overloading in C++

Operator overloading can be done by implementing a function which can be:

1. “Member Function”

2. “Non-Member Function”

3. “Friend Function”

Operator overloading function can be a member function if the Left operand is an Object of

that class, but if the Left operand is different, then Operator overloading function must be a

non-member function.

Operator overloading function can be made friend function if it needs access to the private and

protected members of class.

7.1.3. Restrictions on Operator Overloading in C++

Following are some restrictions to be kept in mind while implementing operator overloading.

1. Precedence and Associativity of an operator cannot be changed.

2. Arity (numbers of Operands) cannot be changed. Unary operator remains unary,

binary remains binary etc.

3. No new operators can be created, only existing operators can be overloaded.

4. Cannot redefine the meaning of a procedure. You cannot change how integers are

added.

7.1.4. Operator Overloading Examples in C++

Almost all the operators can be overloaded in infinite different ways. Following are some

examples to learn more about operator overloading. All the examples are closely connected.

a. Overloading Arithmetic Operator in C++

Arithmetic operator are most commonly used operator in C++. Almost all arithmetic operator

can be overloaded to perform arithmetic operation on user-defined data type. In the below

81

example we have overridden the + operator, to add to Time(hh:mm:ss) objects.

Example: overloading + Operator to add two Time class object #include <iostream.h>

#include <conio.h> class Time

{

int h,m,s; public:

Time()

{

h=0, m=0; s=0;

}

void setTime(); void show()

{

cout<< h<< ":"<< m<< ":"<< s;

}

//overloading '+' operator Time operator+(time);

};

Time Time::operator+(Time t1) //operator function

{

Time t; int a,b;

a = s+t1.s;

t.s = a%60;

b = (a/60)+m+t1.m;

t.m = b%60;

t.h = (b/60)+h+t1.h;

t.h = t.h%12; return t;

}

void time::setTime()

{

cout << "\n Enter the hour(0-11) "; cin >> h;

cout << "\n Enter the minute(0-59) "; cin >> m;

cout << "\n Enter the second(0-59) "; cin >> s;

}

void main()

{

82

Time t1,t2,t3;

cout << "\n Enter the first time "; t1.setTime();

cout << "\n Enter the second time "; t2.setTime();

t3 = t1 + t2; //adding of two time object using '+' operator cout << "\n First time ";

t1.show();

cout << "\n Second time ";

t2.show();

cout << "\n Sum of times "; t3.show();

getch();

}

While normal addition of two numbers return the sumation result. In the case above we have

overloaded the + operator, to perform addition of two Time class objects. We add the seconds,

minutes and hour values separately to return the new value of time.

In the setTime() funtion we are separately asking the user to enter the values for hour, minute and

second, and then we are setting those values to the Time class object.

For inputs, t1 as 01:20:30(1 hour, 20 minute, 30 seconds) and t2 as 02:15:25(2 hour, 15 minute,

25 seconds), the output for the above program will be:

1:20:30

2:15:25

3:35:55

First two are values of t1 and t2 and the third is the result of their addition.

7.1.5. Overloading I/O operator in C++

The first question before learning how to override the I/O operator should be, why we need to

override the I/O operators. Following are a few cases, where overloading the I/O operator proves

useful:

We can overload output operator << to print values for user defined datatypes. We can overload

output operator >> to input values for user defined datatypes.

In case of input/output operator overloading, left operand will be of types ostream& and

istream&

Also, when overloading these operators, we must make sure that the functions must be a Non-

83

Member function because left operand is not an object of the class. And it must be a friend

function to access private data members.

You have seen above that << operator is overloaded with ostream class object cout to print

primitive datatype values to the screen, which is the default behaviors of << operator, when

used with cout. In other words, it is already overloaded by default.

Similarly we can overload << operator in our class to print user-defined datatypes to screen. For

example we can overload << in our Time class to display the value of Time object using cout

rather than writing a custom member function like show() to print the value of Time class

objects.

Time t1(3,15,48);

// like this, directly cout << t1;

When the operator does not modify its operands, the best way to overload the operator is

via friend function.

Example: overloading << Operator to print Class Object We will now overload the << operator in

the Time class, #include<iostream.h>

#include<conio.h> class Time

{

int hr, min, sec; public:

// default constructor Time()

{

hr=0, min=0; sec=0;

}

// overloaded constructor Time(int h, int m, int s)

{

hr=h, min=m; sec=s;

}

// overloading '<<' operator

friend ostream& operator << (ostream &out, Time &tm);

};

// define the overloaded function

ostream& operator << (ostream &out, Time &tm)

{

out << "Time is: " << tm.hr << " hour : " << tm.min << " min : " << tm.sec << " sec"; return out;

84

}

void main()

{

Time tm(3,15,45); cout << tm;

}

Time is: 3 hour : 15 min : 45 sec

This is simplied in languages like Core Java, where all you need to do in a class is override the

toString() method of the String class, and you can define how to print the object of that class

7.1.6. Overloading Relational Operator in C++

You can also overload relational operators like == , != , >= , <= etc. to compare two object of

any class.

Let's take a quick example by overloading the == operator in the Time class to directly

compare two objects of Time class.

class Time

{

int hr, min, sec; public:

// default constructor Time()

{

hr=0, min=0; sec=0;

}

// overloaded constructor Time(int h, int m, int s)

{

hr=h, min=m; sec=s;

}

//overloading '==' operator

friend bool operator==(Time &t1, Time &t2);

};

/

Defining the overloading operator function

Here we are simply comparing the hour, minute and second values of two different Time objects

to compare their values

/

bool operator== (Time &t1, Time &t2)

{

85

return (t1.hr == t2.hr && t1.min == t2.min && t1.sec == t2.sec);

void main()

{

Time t1(3,15,45);

Time t2(4,15,45);

if(t1 == t2)

{

cout << "Both the time values are equal";

}

else

{

cout << "Both the time values are not equal";

}

}

Both the time values are not equal

As the hour value of object t1 is 3 and for object t2 it is 4, hence they are not equal.

7.1.7. Copy Constructor vs. Assignment Operator (=)

Assignment operator is used to copy the values from one object to another already existing

object. For example:

Time tm(3,15,45); // tm object created and initialized Time t1; // t1 object created

t1 = tm; // initializing t1 using tm

Whereas, Copy constructor is a special constructor that initializes a new object from an existing

object.

Time tm(3,15,45); // tm object created and initialized

Time t1(tm); //t1 object created and initialized using tm object

In case of Copy constructor, we provide the object to be copied as an argument to the constructor.

Also, we first need to define a copy constructor in our class. We have covered Copy

constructor in detail here: Copy Constructor in C++.

For defining an additional task to an operator, we must mention what is means in relation to

the class to which it (the operator) is applied. The operator function helps us in doing so.

The Syntax of declaration of an Operator function is as follows: Operator Operator_name

For example, suppose that we want to declare an Operator function for '='. We can do it as

follows:

86

operator =

A Binary Operator can be defined either a member function taking one argument or a

global function taking one arguments. For a Binary Operator X, a X b can be interpreted as

either an operator X (b) or operator X (a, b).

For a Prefix unary operator Y, Ya can be interpreted as either a.operator Y () or Operator Y

(a). For a Postfix unary operator Z, aZ can be interpreted as either a.operator Z(int) or

Operator (Z(a),int).

The operator functions namely operator=, operator [], operator () and operator? must be non-

static member functions. Due to this, their first operands will be lvalues.

An operator function should be either a member or take at least one class object argument.

The operators new and delete need not follow the rule. Also, an operator function, which needs

to accept a basic type as its first argument, cannot be a member function. Some examples of

declarations of operator functions are given below:

class P

{

P operator ++ (int);//Postfix increment P operator ++ (); //Prefix increment P operator || (P);

//Binary OR

}

Some examples of Global Operator Functions are given below: P operator – (P); // Prefix Unary

minus

P operator – (P, P); // Binary “minus” P operator - - (P &, int); // Postfix Decrement

We can declare these Global Operator Functions as being friends of any other class. Examples of

operator overloading:

7.1.8. Operator overloading using friend. Class time

{

int r;

int i;

public:

friend time operator + (const time &x, const time &y);

// operator overloading using friend

time () { r = i = 0;} time (int x, int y) {r = x; i = y;}

87

};

time operator + (const time &x, const time &y)

{

time z;

z.r = x.r +y.r;

z.i = x.i + y.i; return z;

}

main ()

{

time x,y,z;

x = time (5,6);

y = time (7,8);

z = time (9, 10);

z = x+y; // addition using friend function +

}

7.1.9. Operator overloading using member function:

Class abc

{

char str;

int len ; // Present length of the string

int max_length; // (maximum space allocated to string) public:

abc (); // black string of length 0 of maximum allowed length of size 10. abc (const

abc &s) ;// copy constructor

~ abc () {delete str;}

int operator = = (const abc &s) const; // check for equality abc & operator = (const abc &s); //

overloaded assignment operator

friend abc operator + (const abc &s1, const abc &s2);

} // string concatenation abc:: abc ()

{

max_length = 10;

str = new char [max_length]; len = 0; str [0] = '\0';

}

88

Str1

Str2

abc :: abc (const abc &s)

{

len = s. len;

max_length = s.max_length; str = new char [max_length];

strcpy (str, s.str); // physical copying in the new location.

}

[Note: Please note the need of explicit copy constructor as we are using pointers. For example,

if a string object containing string “first” is to be used to initialise a new string and if we do

not use copy constructor then will cause:

F I R S T „\

That is two pointers pointing to one instance of allocated memory, this will create problem if

we just want to modify the current value of one of the string only. Even destruction of one

string will create problem. That is why we need to create separate space for the pointed string

as:

Thus, we have explicitly written the copy constructor. We have also written the explicit

destructor for the class.

This will not be a problem if we do not use pointers.

abc :: ~ abc ()

{

delete str;

}

abc & abc :: operator = (const abc &s)

{

Str1

Str2

F

I

R

S

T

„\

F

I

R

S

T

„\

89

if (this ! = &s) // if the left and right hand variables are different

{

len = s.len;

max_length = s.max-length;

delete str; // get rid of old memory space allocated to this string str = new

char [max_length]; // create new locations

strcpy (str, s.str); // copy the content using string copy function

}

return this;

}

//Please note the use of this operator which is a pointer to object that // invokes the call to this

assignment operator function.

inline int abc :: operator == (const abc &s) const

{

//uses string comparison function return strcmp (str,s.str);

}

abc abc:: operator + (const

abc &s) abc s3;

s6.len = len + s.len; s6.max_length = s6.len;

char newstr = new char [length + 1]; strcpy (newstr,

s.str);

strcat (newstr,str); s6.str =

newstr; return (s3);

}

Overloading << operator:

To overload << operator, the following function may be used: Ostream &

operator << (ostream &s, const abc &x)

{s<< “The String is:” <<x; } return s;}

You can write appropriate main function and use the above overloaded operators as shown in

the complex number example.

90

7.1.10. Assignment And Initialisation Consider the following class:

class student

{

char name; int rollno; public:

student () {name = new char [20];}

~ student () {delete [] name;}

};

int f ()

{ student S1, S2; cin >> S1; cin >> S2; S1 = S2;

}

Now, the problem is that after the execution of f (), destructors for S1& S2 will be executed.

Since both S1 & S2 point to the same storage, execution of destructor twice will lead to error

as the storage being pointed by S1 & S2 were disposed off during the execution of destructor

for S1 itself.

Defining assignment of strings as follows can solve this problem, class student

{

Public:

char name; int rollno;

student () {name = new char [20];}

~ student () {delete [] name ;} student & operator = (const student &)

}

student & student :: Operator = (const student &e)

{

if (this ! =&e) delete [] name;

name = new char [20]; strcpy(name, name);

}

return this;}

7.2 Type Conversions

We have overloaded several kinds of operators but we haven't considered the assignment

operator (=). It is a very special operator having complex properties. We know that = operator

assigns values form one variable to another or assigns the value of user defined object to another

of the same type. For example,

int x, y ;

91

x = 100;

y = x;

Here, first 100 is assigned to x and then x to y.

Consider another statement, 13 = t1 + t2;

This statement used in program 11.2 earlier, assigns the result of addition, which is of type time

to object t3 also of type time.

So the assignments between basic types or user defined types are taken care by the

compiler provided the data type on both sides of = are of same type.

But what to do in case the variables are of different types on both sides of the = operator? In

this case we need to tell to the compiler for the solution.

Three types of situations might arise for data conversion between different types :

(i) Conversion form basic type to class type.

(ii)Conversion from class type to basic type.

(iii) Conversion from one class type to another class type. Now let us discuss the above

three cases :

(i) Basic Type to Class Type

This type of conversion is very easy. For example, the following code segment converts an

int type to a class type.

class distance

{

int feet;

int inches; public:

....

{

distance (int dist) //constructor

feet = dist/12;

inches = dist%12;

}

};

The following conversion statements can be coded in a function : distance dist1; //object dist1

created int length = 20; dist1=length; //int to class type

After the execution of above statements, the feet member of dist1 will have a value of 1

92

and inches member a value of 8, meaning 1 feet and 8 inches.

A class object has been used as the left hand operand of = operator, so the type conversion

can also be done by using an overloaded = operator in C++.

(ii) Class Type to Basic Type

For conversion from a basic type to class type, the constructors can be used. But for conversion

from a class type to basic type constructors do not help at all. In C++, we have to define an

overloaded casting operator that helps in converting a class type to a basic type. The syntax of

the conversion function is given below:

Operator typename()

{

.......

. //statements

}

Here, the function converts a class type data to typename. For example, the operator float ()

converts a class type to type float, the operator int () converts a class type object to type int.

For example,

matrix :: operator float ()

{

float sum = 0.0; for(int

i=0;i<m;i++)

{

for (int j=0; j<n; j++)

sum=sum+a[i][j]a[i][j];

}

Return sqrt(sum); //norm of the matrix

}

Here, the function finds the norm of the matrix (Norm is the square root of the sum of the squares

of the matrix elements). We can use the operator float () as given below :

float norm = float (arr); or

float norm = arr;

where arr is an object of type matrix. When a class type to a basic type conversion is required,

the compiler will call the casting operator function for performing this task.

93

The following conditions should be satisfied by the casting operator function :

(a) It must not have any argument

(b) It must be a class member

(c) It must not specify a return type.

(i) One Class Type to Another Class Type

There may be some situations when we want to convert one class type data to another class type

data. For example,

Obj2 = obj1; //different type of objects

Suppose obj1 is an object of class studdata and obj2 is that of class result. We are converting

the class studdata data type to class result type data and the value is assigned to obj2. Here

studdata is known as source class and result is known as the destination class.

The above conversion can be performed in two ways :

(a) Using a constructor.

(b) Using a conversion function.

When we need to convert a class, a casting operator function can be used i.e. source class. The

source class performs the conversion and result is given to the object of destination class.

If we take a single-argument constructor function for converting the argument's type to the class

type (whose member it is). So the argument is of the source class and being passed to the

destination class for the purpose of conversion. Therefore it is compulsory that the conversion

constructor be kept in the destination class.

7.3 Summary

In this lesson, we discussed the operators that can be overloaded. Even after writing operator

overloaded functions, the precedence of operators remains unchanged. The '++' & '--' operators

can be used as Postfix or Prefix operators. So, separate functions overloading them for both the

different applications have been shown. We are of a view that Private data of a class can be

accessed only in member functions of that class.

94

7.4 Self Assessment Questions

1. What do you mean by dynamic binding? How it is useful in OOP?

2. What is the use of preprocessor directive #include<iostream>?

3. How does a main () function in c++ differ from main () in c?

4. Describe the major parts of a c++ program.

5. Write a program to read two numbers from the keyboard and display the

larger value on the screen.

6. Write a program to input an integer value from keyboard and display on

screen “WELL DONE” that many times.

7. What is the use of a constructor function in a class? Give a suitable example of a

constructor function in a class.

8. Design a class having the constructor and destructor functions that shiukd display the

number of object being created or destroyed of this class type.

9. Write a C++ program, to find the factorial of a number using a constructor and a

destructor (generating the message “you have done it”)

10. Define a class “string” with members to initialize and determine the length

of the string. Overload the operators '+' and '+=' for the class “string.

95

Chapter 8

Inheritance

Objective:

At the end of this session students shall be learning:

 Introduction of OOPs

 Single Inheritance,

 Multiple Inheritance,

 Multilevel Inheritance,

 Hierarchical inheritance,

 Hybrid Inheritance,

 Container Classes,

 Virtual Base Classes,

 Construction in Derived classes,

 Virtual Function,

 Pure Virtual Functions,

 Abstract Classes

Structure:

8.1. Introduction OOPs – Inheritance

8.2. Single Inheritance in C++

8.3. Multiple Inheritance in C++

8.4. Hierarchical inheritance in C++

8.5. Multilevel Inheritance in C++

8.6. Hybrid Inheritance in C++

8.7. Constructor call in Multiple Inheritance

8.8. Upcasting in C++

8.9. Function that are never Inherited

8.10. Inheritance and static function in C++

8.11. Hybrid Inheritance and Virtual Class

8.12. Hybrid Inheritance and Contructor

8.13. Summary

8.14. Self Assessment Questions

96

8.1 Introduction OOPs – Inheritance

Inheritance is a way to reuse once written code again and again. The class which is inherited is

called the Base class & the class which inherits is called the Derived class. They are also

called parent and child class. So when, a derived class inherits a base class, the derived class can

use all the functions which are defined in base class, hence making code reusable.

Considering HumanBeing a class, which has properties like hands, legs, eyes etc, and

functions like walk, talk, eat, see etc. Male and Female are also classes, but most of the

properties and functions are included in HumanBeing, hence they can inherit everything from

class HumanBeing using the concept of Inheritance.

Protected, is the last access specifier, and it is similar to private, it makes class member

inaccessible outside the class. But they can be accessed by any subclass of that class. (If class A

is inherited by class B, then class B is subclass of class A. We will learn about inheritance

later.)

class ProtectedAccess

{

// protected access modifier protected:

int x; // Data Member Declaration

void display(); // Member Function decaration

}

Inheritance is the capability of one class to acquire properties and characteristics from another

class. The class whose properties are inherited by other class is called the Parent or Base or

Super class. And, the class which inherits properties of other class is called Child or Derived

or Sub class.

Inheritance makes the code reusable. When we inherit an existing class, all its methods and

fields become available in the new class, hence code is reused.

Inheritance is the process by which objects of one class acquired the properties of objects of

another classes. It supports the concept of hierarchical classification. For example, the bird,

'robin' is a part of class 'flying bird' which is again a part of the class 'bird'. The principal

behind this sort of division is that each derived class shares common characteristics with the

class from which it is derived.

In OOP, the concept of inheritance provides the idea of reusability. This means that we can add

additional features to an existing class without modifying it. This is possible by deriving a

97

new class from the existing one. The new class will have the combined feature of both the

classes. The real appeal and power of the inheritance mechanism is that it.

Allows the programmer to reuse a class i.e almost, but not exactly, what he wants, and to tailor

the class in such a way that it does not introduced any undesirable side-effects into the rest of

classes. We have already learned the process of Inheritance while discussing the Object-

Oriented Programming in C++.

8.1.1. Basic Syntax of Inheritance

class Subclass_name : access_mode Superclass_name

While defining a subclass like this, the super class must be already defined or at least declared

before the subclass declaration.

Access Mode is used to specify, the mode in which the properties of superclass will be

inherited into subclass, public, privtate or protected.

Example of Inheritance

Whenever we want to use something from an existing class in a new class, we can use the concept

on Inheritance. Here is a simple example,

Example for Inheritance in C++ class Animal

{

public:

int legs = 4;

};

// Dog class inheriting Animal class class Dog :

public Animal

{

public:

int tail = 1;

};

int main()

{

Dog d;

cout << d.legs; cout << d.tail;

} 4 1

Inheritance allows a class to include the members of other classes without repetition of

members. There were three ways to inheritance means, “public parts of super class remain public

98

and protected parts of super class remain protected.” Private Inheritance means “Public and

Protected Parts of Super Class remain Private in Sub- Class”.

Protected Inheritance means “Public and Protected Parts of Superclass remain protected in

Subclass.

A pointer is a variable which holds a memory address. Any variable declared in a

program has two components:

(i) Address of the variable

(ii) Value stored in the variable.

 For example, int x = 386;

The above declaration tells the C++ compiler for :

(a) Reservation of space in memory for storing the value.

(b) Associating the name x with his memory location.

(c) Storing the value 386 at this location.

It can be represented with the following figure:

Location name x

Value at location 386

location number 3313

Here, the address 3313 is assumed one; it may be some other address also.

The pointers are one of the most useful and strongest features of C++. There are three useful

reason for proper utilization of pointer:

(i) The memory location can be directly accessed and manipulated.

(ii) Dynamic memory allocation is possible.

(iii) Efficiency of some particular routines can be improved.

8.1.2. Access Modifiers and Inheritance:

Depending on Access modifier used while inheritance, the availability of class

members of Super class in the sub class changes. It can either be private, protected or

public.

1) Public Inheritance

This is the most used inheritance mode. In this the protected member of super class

becomes protected members of sub class and public becomes public.

class Subclass : public Superclass

99

2) Private Inheritance

In private mode, the protected and public members of super class become private

members of derived class.

class Subclass : Superclass // By default its private inheritance

3) Protected Inheritance

In protected mode, the public and protected members of Super class becomes

protected members of Sub class.

class subclass : protected Superclass

Table showing all the Visibility Modes

Base class

Derived Class

Public Mode

Derived Class

Private Mode

Derived Class

Protected Mode

Private Not Inherited Not Inherited Not Inherited

Protected Protected Private Protected

Public Public Private Protected

Inheritance relationship is the highest relationship that can be represented in C++. It is a

powerful way of representing a hierarchical relationship directly. The real appeal and power of

the inheritance mechanism is that it allows us to reuse a class that is almost, but not exactly,

what we want and to tailor the class in a way that is does not introduce any unwanted side

effects into the rest of the class. We must review the attributes and operations of the classes

and prepare an inheritance relationship:

Inheritance relationship table

Class Depends on

A A ….

B B A

C C A

D D B

B1 B

B2 B

Containment relationship means the use of an object of a class as a member of another class.

This is an alternative and complimentary technique to use the class inheritance. But, it is

100

often a tricky issue to choose between the two techniques. Normally, if there is need to

override attributes or functions, then the inheritance is the best choice. On the other hand, if we

want to represent a property by a variety of types, then the containment relationship is the right

method to follow. Another place where we need to use an object as a member is when we need to

pass an attribute of a class as an argument to the constructor of another class. The “another”

class must have a member object that represents the argument. The inheritance represents is a

relationship and the containment represents has a relationship.

Use relationship gives information such as the various classes a class uses and the way it uses

them. For example, a class A can use classes B and C in several ways:

1. A reads member of B

2. A calls a member of C

3. A creates B using new operator

8.1.3. Types of Inheritance in C++

In C++, we have 5 different types of Inheritance.

1. Single Inheritance

2. Multiple Inheritance

3. Hierarchical Inheritance

4. Multilevel Inheritance

5. Hybrid Inheritance (also known as Virtual Inheritance)

8.2. Single Inheritance in C++

In this type of inheritance one derived class inherits from only one base class. It is the most

simplest form of Inheritance.

8.3. Multiple Inheritances in C++

In this type of inheritance a single derived class may inherit from two or more than two base

classes

101

8.4. Hierarchical Inheritance in C++

In this type of inheritance, multiple derived classes inherits from a single base class..

8.5. Multilevel Inheritance in C++

In this type of inheritance the derived class inherits from a class, which in turn inherits from

some other class. The Super class for one, is sub class for the other.

8.6. Hybrid (Virtual) Inheritance in C++

Hybrid Inheritance is combination of Hierarchical and Mutilevel Inheritance.

102

8.6.1. Order of Constructor Call with Inheritance in C++

Base class constructors are always called in the derived class constructors. Whenever you

create derived class object, first the base class default constructor is executed and then the

derived class's constructor finishes execution.

Points to Remember

1. Whether derived class's default constructor is called or parameterized is called, base

class's default constructor is always called inside them.

2. To call base class's parameterized constructor inside derived class's parameterised

constructor, we must mention it explicitly while declaring derived class's

parameterized constructor.

Base class Default Constructor in Derived class Constructors

Default constructor is present in all the classes. In the below example we will see when and

why Base class's and Derived class's constructors are called.

class Base

{

int x;

public:

// default constructor Base()

{

cout << "Base default constructor\n";

}

};

class Derived : public Base

{

int y; public:

// default constructor Derived()

{

cout << "Derived default constructor\n";

}

// parameterized constructor Derived(int i)

{

cout << "Derived parameterized constructor\n";

}

103

};

int main()

{

Base b; Derived d1; Derived d2(10);

}

Base default constructor Base default constructor Derived default constructor Base default

constructor

Derived parameterized constructor

You will see in the above example that with both the object creation of the Derived class, Base

class's default constructor is called.

8.6.2. Base class Parameterized Constructor in Derived class Constructor

We can explicitly mention to call the Base class's parameterized constructor when Derived

class's parameterized constructor is called.

class Base

{

int x; public:

// parameterized constructor Base(int i)

{

x = i;

cout << "Base Parameterized Constructor\n";

}

};

class Derived : public Base

{

int y; public:

// parameterized constructor Derived(int j):Base(j)

{

y = j;

cout << "Derived Parameterized Constructor\n";

}

};

int main()

{

104

Derived d(10) ;

}

Base Parameterized Constructor Derived Parameterized Constructor

8.6.3. Why is Base class Constructor called inside Derived class?

Constructors have a special job of initializing the object properly. A Derived class constructor

has access only to its own class members, but Derived class objects also have inherited

property of Base class, and only base class constructor can properly initialize base class

members. Hence all the constructors are called, else object wouldn't be constructed properly.

8.7. Constructor call in Multiple Inheritance in C++

It is almost the same, all the Base class's constructors are called inside derived class's

constructor, in the same order in which they are inherited.

class A : public B, public C ;

In this case, first class B constructor will be executed, then class C constructor and then class A

constructor.

8.8. Upcasting in C++

Upcasting is using the Super class's reference or pointer to refer to a Sub class's object. Or we

can say that, the act of converting a Sub class's reference or pointer into its Super class's

reference or pointer is called Upcasting.

 Base

 Upcasting

 Derived

class Super

{

int x; public:

void funBase()

{

105

cout << "Super function";

}

};

class Sub:public Super

{

int y;

};

int main()

{

Super ptr; // Super class pointer Sub obj;

ptr = &obj;

Super &ref; // Super class's reference ref=obj;

}

The opposite of Upcasting is Downcasting, in which we convert Super class's reference

or pointer into derived class's reference or pointer.

8.9. Functions that are never Inherited

 Constructors and Destructors are never inherited and hence never overrided.

 Also, assignment operator = is never inherited. It can be overloaded but can't be

inherited by sub class.

8.10. Inheritance and Static Functions in C++

1. They are inherited into the derived class.

2. If you redefine a static member function in derived class, all the other overloaded

functions in base class are hidden.

3. Static Member functions can never be virtual. We will study about Virtual in coming

topics.

8.11. Hybrid Inheritance and Virtual Class in C++

In Multiple Inheritance, the derived class inherits from more than one base class. Hence, in

Multiple Inheritance there are a lot chances of ambiguity.

class A

{

106

void show();

};

class B:public A

{

// class definition

};

class C:public A

{

// class defintion

};

class D:public B, public C

// class definition

};

int main()

{

D obj; obj.show();

}

In this case both class B and C inherits function show() from class A. Hence class D has two

inherited copies of function show(). In main() function when we call function show(), then

ambiguity arises, because compiler doesn't know which show() function to call. Hence we use

Virtual keyword while inheriting class.

class B : virtual public A

{

// class definition

};

class C : virtual public A

{

// class definition

};

class D : public B, public C

{

// class definition

};

107

Now by adding virtual keyword, we tell compiler to call any one out of the two show()

functions.

8.12. Hybrid Inheritance and Constructor call

As we all know that whenever a derived class object is instantiated, the base class constructor

is always called. But in case of Hybrid Inheritance, as discussed in above example, if we create

an instance of class D, then following constructors will be called:

before class D's constructor, constructors of its super classes will be called, hence constructors

of class B, class C and class A will be called.

when constructors of class B and class C are called, they will again make a call to their super

class's constructor.

This will result in multiple calls to the constructor of class A, which is undesirable. As there is

a single instance of virtual base class which is shared by multiple classes that inherit from it,

hence the constructor of the base class is only called once by the constructor of concrete class,

which in our case is class D.

If there is any call for initializing the constructor of class A in class B or class C, while creating

object of class D, all such calls will be skipped.

8.13. Summary.

In this chapter, we have learned the concept of OOPs. Also we have learned the concept of

Single Inheritance, Multiple Inheritance, Multlevel Inheritance, Hierarchical inheritance,

Hybrid Inheritance, Container Classes, , Virtual Base Classes, Construction in Derived

classes, Virtual Function, Pure Virtual Functions, and also learned Abstract Classes.

108

8.13. Self Assessment Questions

1. How are data and functions organized in an object-oriented program?

2. What are the unique advantages of an object-oriented programming paradigm?

3. Distinguish between the following terms:

i. Inheritance and polymorphism

ii. Dynamic binding and message passing

4. Describe inheritance as applied to OOP.

5. What do you mean by dynamic binding? How it is useful in OOP?

6. What is a virtual base class ? When do we make it?

7. Write a program in c++ which demonstrate the use of inheritance.

8. What do you understand by function returning a pointer? Give any suitable example to

support your answer.

109

Chapter 9

The C++ I/O System Basics

Objective:

At the end of this session students shall be learning:

 Introduction C++ Streams,

 C++ Stream Classes,

 Unformated I/O Operations,

 Formatted I/O Operations,

 Manipulators

Structure:

9.1 Introduction

9.2 C++ streams

9.3 C++ streams classes

9.4 Unformatted I/O Operations

9.5 Formatted console I/O Operations

9.6 Managing output with manipulators

9.7 Design Our Own Manipulators

9.8. Summary

9.9. Self Assessment Questions

9.1 Introduction:

C++ supports two complete I/O systems: the one inherited from C and the object- oriented

I/O system defined by C++ (hereafter called simply the C++ I/O system). Like C-based I/O,

C++'s I/O system is fully integrated. The different aspects of C++'s I/O system, such as

console I/O and disk I/O, are actually just different perspectives on the same mechanism.

Every program takes some data as input and generates processed data as output following the

input -process-output cycle. C++ supports all of C's rich set of I/O functions that can be used

in the C++ programs. But these are restrained from using due to two reasons, first I/O methods

in C++ supports the concept of OOP and secondly I/O methods in C can not handle the user

defined data types such as class objects. C++ uses the concept of streams and stream classes

to implement its I/O operation with the console and disk fils.

110

istream_withassign

istream streambuf

ios

iostream_withassign

iostream

ostream_withassign

ostream

9.2 C++ streams:

A stream is a logical device that either produces or consumes information. A stream is linked to

a physical device by the I/O system. All streams behave in the same way even though the actual

physical devices they are connected to may differ substantially. Because all streams behave

the same, the same I/O functions can operate on virtually any type of physical device. For

example, one can use the same function that writes to a file to write to the printer or to the

screen. The advantage to this approach is that you need learn only one I/O system.

A stream act like a source or destination, the source stream that provide data to the program is

called the input stream and the destination stream that receive output from the program is

called the output stream.

C++ containes cin and cout predefined streams that opens automatically when a program

begins its execution.cin represents the input stream connected to the standard input device

and cout represents the output stream connected to standard output device.

9.3 C++ Stream Classes:

The C++ I/O system contains a hierarchy of classes that are used to define various streams to

deal with both the console and disk files. These classes are called stream classes. Figure 9.1

shows the hierarchy of the stream classes used for input and output operstions with the

console unit. These classes are declared in the header file iostrem. The file should be included

in all programs that communicate with the console unit.

pointer

input output

Figure 9.1 Stream classes for console I/O operations

As in figure 9.1 ios is the base class for istream(input stream) and ostream(output stream)

which are base classes for iostream(input/output stream).The class ios is declared as the

virtual base class so that only one copy of its members are inherited by the iostream.

The class ios provides the basic support for formatted and unformatted input/output operations.

111

The class istream provides the facilities for formatted and unformatted input while the class

ostream(through inheritance) provides the facilities for formatted output.

The class iostream provides the facilities for handling both input output streams. Three classes

namely istream_with assign, ostream_withassign and iostream_with assign add assignment

operators to these classes.

Table 9.1 Stream classes for console operations

Class name Contents

ios(General input/output

stream class)

Contains basic facilities that are ued by all other input and

output classes

Also contains a pointer to buffer object(streambuf object)

Declares constants and functions that are necessary for

handling formatted input and output operations

istream(input stream) Inherits the properties of ios

Declares input functions such as get(),getline() and read()

Contains overloaded extraction operator>>

ostream(output stream) Inherits the property of ios

Declares output functions put() and write()

Contains overloaded insertion operator <<

iostream (input/output
stream)

Inherits the properties of ios stream and ostream through
multiple inheritance and thus contains all the input and output

functions

streanbuf Provides an interface to physical devices through buffer

Acts as a base for filebuf class used ios files

9.4 Unformatted input/output Operations:

9.4.1 Overloaded operators >> and<<

Objects cin and cout are used for input and output of data by using the overloading of

>> and << operators.The >> operator is overloaded in the istream class and << is overloaded

in the ostream class. The following is the format for reading data from keyboard:

cin>>variable1>>variable2>>… >>variable n

where variable 1 to variable n are valid C++ variable names that have declared already.This

statement will cause the computer to stop the execution and look for the input data from the

112

keyboard.the input data for this statement would be

data1 data2… .. data nThe input data are separated by white spaces and

should

match the type of variable in the cin list spaces, newlines and tabs will be skipped.

The operator >> reads the data character by character and assigns it to the indicated location.

The reading for a variable will be terminated at the encounter of a white space or a character

that does not match the destination type. For example consider the code

int code; cin>> code;

Suppose the following data is entered as input 42580 the operator will read the characters upto

8 and the value 4258 is assigned to code. The character D remains in the input streams and will

be input to the next cin statement. The general form of displaying data on the screen is

cout <<item1<<item2<<… <<item n

The item item1 through item n may be variables or constants of any basic type.

9.4.2 put() and get() functions:-

The classes istream and ostream define two member functions get(),put() respectively to

handle the single character input/output operations. There are two types of get() functions.

Both get(char) and get(void) prototype can be used to fetch a character including the blank

space,tab and newline character. The get(char) version assigns the input character to its

argument and the get(void) version returns the input character.

Since these functions are members of input/output Stream classes, these must be invoked

using appropriate objects.

Example Char c;

cin.get(c) //get a character from the keyboard and assigns it to c while(c!='\n')

{ cout<< c; //display the character on screen cin.get(c) //get another character

}

113

this code reads and display a line of text. The operator >> can be used to read a character but

it will skip the white spaces and newline character.The above while loop will not work

properly if the statement

cin >> c;

is used in place of cin.get (c);

The get(void) version is used as follows:

………….. char c;

c= cin.get();

…………

The value returned by the function get() is assigned to the variable c.

The function put(), a member of ostream class can be used to output a line of text, character

by character. For example

cout.put('x');

displays the character x and cout.put(ch);

displays the value of variable ch.

The variable ch must contain a character value.A number can be used as an argument to function

put().For example,

cout.put(68);

displays the character D.This statement will convert the numeric value 68 to a char value and

displays character whose ASCII value is 68.

The following segment of a program reads a line of text from keyboard and displays it on the

screen

char c; cin.get (c);

while(c!= '\n')

{ cout.put(c);

cin.get (c);

}

The program 9.1 illustrate the use of two character handling functions. Program 9.1: Character

I/O with get() and put()

114

#include <iostream> using namespace std; int main()

{

int count=0; char c;

cout<<”INPUT TEXT \n”; cin.get(c);

while (c 1='\n')

{ cout.put(c); count++; cin.get(c);

}

cout<< “\n Number of characters =” <<count <<”\n”; return 0;

}

Input

Object oriented programming Output

Object oriented programming Number of characters=27

9.4.3 getline() and write() functions:

A line of text can be read or display effectively using the line oriented input/output functions

getline() and write() .The getline() function reads a whole line of text that ends with a newline

character. This function can be invokedby using the object cin as follows:

cin.getline(line,size);

This function call invokes the function getline() which reads character input into the variable

line.The reading is terminated as soon as either the newline character '\n' is encountered or

size-1 characters are read(whichever occurs first) .The newline character is read but not

saved.instead it is replaced by the null character.For example consider the following code:

char name[20]; cin.getline(name,20);

Assume that we have given the following input through key board: Bjarne Stroustrup<press

Return>

This input will be read correctly and assigned to the character array name. Let us suppose

the input is as follows:

Object Oriented Programming<press Return>

In this case ,the input will be terminated after reading the following 19 characters Object

Oriented Pro

Remember ,the two blank spaces contained in the string are also taken into

115

account.Strings cen be read using the operator >> as follows

cin>>name;

But remember cin can read strings that do not contain white spaces.This means that cin can

read just one word and not a series of words such as “Bjarne Stroustrup”.But it can read the

following string correctly:

Bjarne_Stroustrup

After reading the string ,cin automatically adds the terminating null character to the character

array.

The program 9.2 demonstrates the use of >> and getline() for reading the strings.

Program 9.2: Reading Strings With getline() #include <iostream>

using namespace std; int main()

{ int size=20; char city[20]; cout<<”enter city name:\n “; cin>>city;

cout<<”city name:”<<city<<”\n\n”; cout<<”enter city name again: \n”;

 cin.getline(city,size);

cout<<”city name now:”<<city<<”\n\n”; cout<<”enter another city name: \n”;

 cin.getline(city,size);

cout <<”New city name:”<<city<<”\n\n'; return 0;

}

output would be:

first run

enter city name:

Delhi

Enter city name again:

City name now:

Enter another city name:

Chennai

New city name: Chennai

During fist run the newline character '\n\ at the end of “Delhi” which is waiting in the input

queue is read by the getline() that follows immediately and therefore it does not wait for any

response to the prompt 'enter city name again'.The character'\n' is read as an empty line.

116

The write () function displays an entire line and has the following form:

cout. write (line,size)

The first argument line represents the name of the string to be displayed and the second

argument size indicates the number of characters automatically when the null character is

encountered. If the size is greater than the length of line, then it displays beyond the bound of

line.Program9.3 illustrates how write() method displays a string.

Program 9.3

Displaying String With write()

#include <iostream> #include<string> using namespace std; int main(0

{

char string1=”C++”;

char string2 =”Programming”; int m=strlen(string1);

int n =strlen(string2); for (int i=1;i<n;i++)

{

cout.write(string2,i); cout<<”\n”;

}

for (i<n;i>0;i--)

{

cout.write(string2,i); cout<<”\n”;}

//concatenating strings

cout.write(string1,m).write(string2,n); cout<<”\n”;

//crossing the boundary cout.write(string1,10); return 0;

}

output:

117

P

Pr Pro Prog Progr

Progra Program Programm

Programmi Programmin Programming Programmin Programmi Programm Program Progra

Progr Prog Pro Pr

P

C++ Programming C++ Progr

The last line of the output indicates that the statement

cout.write(string1,10);

displays more character than what is contained in string1.

It is possible to concatenate two strings using the write() function.The statement

cout.write(string1,m).write(string2,n);

is equivalent to the following two statements:

cout.write(string1,m);

cout.write(string2,n);

9.5 Formatted Console I/O Operations:

C++ supports a number of features that could be used for formatting the output. These

features include:

--ios class function and flags.

--manipulators.

--User-defined output functions.

The ios class contains a large number of member functions that would help us to format the

output in a number of ways.The most importany ones among them are listed in table 9.2

118

Table 9.2 ios format functions

Function Task

Width() To specify the required field size for displaying an output

value

Precision() To specify the number of digits to be displayed after the

decimal point of float value

Fill() To specify a character that is used to fill the unused portion of
a field

Setf() To specify format flags that can control the form of output

display(such as left-justification and right-justification)

Unsetf() To clear the flags specified

Manipulators are special functions that can be included in the I/O statements to alter the format

parameter of stream .Table 9.3 shows some important manipulator functions that are

frequently used. To access these manipulators, the file iomanip should be included in the

program.

Table 9.3 Manipulators

Manipuators Equivalent ios function

setw() width()

setprecision() precision()

setfill() fill()

setiosflags() setf()

resetiosflags() unsetf()

In addition to these standard library manipulators we can create our own manipulator

functions to provide any special output formats.

9.9.1 Defining Field Width:width():

The width() function is used to define the width of a field necessary for the output of an

item.As it is a member function object is required to invoke it like

cout.width(w);

here w is the field width.The output will be printed in a field of w character wide at the right

end of field.The width() function can specify the field width for only one item(the item that

follows immediately).After printing one item(as per the specification) it will revert back the

119

default.for example,the statements

cout.width(5); cout<<543<<12<<”\n”;

will produce the following output:

 5 4 3 1 2

The value 543 is printed right justified in the first five columns.The specification width (5)

does not retain the setting for printing the number 12.this can be improved as follows:

cout.width(5); cout<<543; cout.width(5); cout<<12<<”\n”;

This produces the following output:

 5 4 3 1 2

The field width should be specified for each item.C++ never truncate the values and therefore,

if the specified field width is smaller than the size of the value to be printed,C++ expands

the field to fit the value.program 9.4 demonstrates how the function width() works.

Program 9.4: Specifying field size with width()

#include <iostream> using namespace std; int main()

{

int item[4] ={ 10,8,12,15};

int cost[4]={75,100,60,99};

cout.width(5); cout<<”Items”; cout.width(8); cout<<”Cost”; cout.width(15); cout<<”Total

Value”<<”\n”; int sum=0;

for(int i=0;i<4 ;i++)

{

cout.width(5); cout<<items[i]; cout.width(8); cout<<cost[i];

int value = items[i] cost[i]; cout.width(15); cout<<value<<”\n”;

sum= sum + value;

}

cout<<”\n Grand total = “; cout.width(2); cout<<sum<<”\n”;

return 0;

120

}

The output of program 9.4 would be

ITEMS COST TOTAL VALUE

10 75 750

8 100 800

12 60 720

15 99 1485

Grand total =3755

9.9.2 Setting Precision: precision():

By default, the floating numbers are printed with six digits after the decimal points. However,

we can specify the number of digits to be displayed after the decimal point while printing the

floating point numbers.

This can be done by using the precision () member function as follows: cout.precision(d);

where d is the number of digits to the right of decimal point.for example the statements

cout.precision(3); cout<<sqrt(2)<<”\n”; cout<<3.14159<<”\n”; cout<<2.50032<<”\n”;

will produce the following output:

1.141(truncated)3.142(rounded to nearest cent)2.5(no trailing zeros)

Unlike the function width(),precision() retains the setting in effect until it is reset. That is

why we have declared only one statement for precision setting which is used by all the three

outputs. We can set different valus to different precision as follows:

cout.precision(3);

cout<<sqrt(2)<<”\n”;

cout.precision(5);

121

cout<<3.14159<<”\n”;

We can also combine the field specification with the precision setting.example:

cout.precision(2);

cout.width(5);

cout<<1.2345;

The first two statement instruct :”print two digits after the decimal point in a field of five

character width”.Thus the output will be:

 1 2 3

Program 9.5 shows how the function width() and precision() are jointly used to control the

output format.

Program 9.5: PRECISION SETTING WITH precision()

#include<iostream> #include<cmath> using namespac std; int main()

{

cout<<”precision set to 3 digits\n\n”; cout.precision(3);

cout.width(10); cout<<”value”; cout.width(15); cout<<”sqrt_of _value”<<”\n”; for (int

n=1;n<=5;n++)

{

cout.width(8); cout<<n; cout.width(13); cout<<sqrt(n)<<”\n”;

}

cout<<”\n precision set to 5 digits\n\n”; cout.precision(5);

cout<<”sqrt(10) = “ <<sqrt(10)<<”\n\n”; cout.precision(0);

cout<<”sqrt(10) = “ <<sqrt(10)<<”(default setting)\n”; return 0;

}

122

The output is Precision set to 3 digits

VALUE SQRT OF VALUE

1 1

2 1.41

3 1.73

4 2

5 2.24

Precision set to 5 digits Sqrt(10)=3.1623

Sqrt(10)=3.162278 (Default setting)

9.9.3 FILLING AND PADDING :fill()

The unused portion of field width are filled with white spaces, by default. The fill() function

can be used to fill the unused positions by any desired character.It is used in the following form:

cout.fill(ch);

Where ch represents the character which is used for filling the unused

positions.Example:

cout.fill(''); cout.width(10);

cout<<5250<<”\n”; The output

would be:

 5 2 5 0

Financial institutions and banks use this kind of padding while printing cheques so that no one

can change the amount easily.Like precision (),fill()

Stays in effect till we change it. As shown in following program

123

Program 9.6

#include<iostream>

using namespace std;

int main()

{ cout.fill('<'); cout.precision(3); for(int n=1;n<=6;n++)

{

cout.width(5); cout<<n;

cout.width(10);

cout<<1.0/float(n)<<”\n”;

if(n==3)

cout.fill('>');

}

cout<<”\nPadding changed \n\n”; cout.fill('#'); //fill() reset cout.width(15);

cout<<12.345678<<”\n”; return 0;

}

The output will be

<<<<1<<<<<<<<<1

<<<<2<<<<<<<<0.5

<<<<3<<<<<<0.333

>>>>4>>>>>>0.25

124

>>>>5>>>>>>>0.2

PADDING CHANGED

#########12.346

9.5.4 FORMATTING FLAGS, Bit Fields and setf():

The setf() a member function of the ios class, can provide answers left justified. The setf()

function can be used as follows:

cout.setf(arg1.arg2)

The arg1 is one of the formatting flags defined in the class ios.The formatting flag specifies

the format action required for the output.Another ios constant,arg2,known as bit field specifies

the group to which the formatting flag belongs. for example:

cout.setf(ios::left,ios::adjustfield);

cout.setf(ios::scientific,ios::floatfield);

Note that the first argument should be one of the group member of second argument.

Consider the following segment of code:

cout.fill('');

cout.setf(ios::left,ios::adjustfield);

125

cout.width(15);

cout<<”table1”<<”\n”;

This will produce the following output:

 1

The statements cout.fill('');

cout.precision(3);

cout.setf(ios::internal,ios::adjustfield);

cout.setf(ios::scientific,ios::floatfield);

cout.width(15);

cout<<-12.34567<<”\n”;

Will produce the following output:

9.6 Managing Output with Manipulators:

The header file iomanip provides a set of functions called manipulators which can be

used to manipulate the output format. They provide the same features as that of the

ios member functions and flags.

For example, two or more manipulators can be used as a chain in one statement as

follows

cout<<manip1<<manip2<<manip3<<item;

cout<<manip1<<item1<<manip2<<item2;

This kind of concatenation is useful when we want to display several columns of

output.

- 1 . 2 3 5 e + 0 1

126

The most commonly used manipulators are shown below:

Manipulator Meaning Equivalent

setw(int w) Set the field width to w width()

setprecision(int d) Set the floating point

precision to d

precision()

setfill(int c) Set the fill character to c fill()

setiosflags(long f) Set the format flag f setf()

resetiosflags(long f) Clear the flag specified by f unsetf()

endl Insert new line and flush

stream

“\n”

Examples of manipulators are given below: cout<<setw(10)<<12345;

This statement prints the value 12345 right-justified in a field of 10 characters. The output can

be made left-justified by modifying the statement follows:

cout<<setw(10)<<setiosflags(ios::left)<<12345;

One statement can be used to format output for two or more values.For example, the statement

cout<<setw(5)<<setprecision(2)<<1.2345

<<setw(10)<<setprecision(4)<<sqrt(2)<<setw(15)<<setiosflags(ios::scientific)<< sqrt(3);

<<endl;

will print all the three values in one line with the field sizes of 5,10,15 respectively.

The following program illustrates the formatting of the output values using both manipulators

and ios functions.

Program 9.7

#include<iostream>

#include<iomanip>

using namespace std; int main()

{

127

cout.setf(ios::showpoint);

cout<<setw(5)<<”n”<<setw(15)<<”inverse of n”<<setw(15)<<”sum of terms”;

double term,sum=0;

for (int n=1;n<=10;n++)

{

term=1.0/float(n);

sum=sum + term;

c o u t < < s e t w (5) < < n < < s e t w (1 4) < < s e t p r e c i s i o n (4)

<<setiosflags(ios::scientific)<<term <<setw(13)<<resetioflags(ios::scientific)

<<sum<<endl;

} return 0;

}

9.7 Designing our own manipulators:

The general form for creating a manipulator without any argument is ostream &

manipulator (ostream & output)

{

……………

… .. (code)

……………..

128

return output;

}

The following program illustrate the creation and use of user defined manipulators.

Program 9.8

#include <iostream>

#include <iomanip>

using namespace std;

ostream ¤cy (ostream & output)

{

output<< “Rs”; return

output;

}

ostream & form (ostream &output)

{output.set(ios::showpos);

output.setf(ios::showpoint);

output.fill('');

output.precision(2);

output<<setiosflags(ios::fixed)<<setw(10); return

output;

}

int main()

{

cout<<currency<<form<<7864.5; return 0;

}

the output of program is Rs+7864.50

In the program form represents a complex set of format functions and manipulators.

9.8 Summary

A stream is a sequence of bytes and serves as a source or destination for an I/O data.

129

The source stream that provides data to the program is called as input stream and the destination

stream that receives output from the program is called the output stream.

The C++ I/O system contains a hierarchy of stream classes used for input and output

operations.These classes are declared in the header file 'iostream'.

cin represents the input stream connected to standard input device and cout represents

the output stream connected to standard output device.

The >> operator is overloaded in the istream class as an extraction operator and the

<< operator is overloaded in the ostream class as an insertion operator.

We can read and write a line of text more efficiently using the line oriented I/O functions

getline() and write() respectively.

The header file iomanip provides a set of manipulator functions to manipulate output formats.

9.9 Self Assessment Questions

9.1. What is a stream?

9.2. Describe briefly the features of I/O system supported by C++.

9.3. How is cout able to display various types of data without any special

instructions?

9.4. Why it is necessary to include the file iostream in all our programs?

9.5. What is the role of iomanip file?

9.6. What is the basic difference between manipulators and ios member functions in

implementation? Give examples.

130

Chapter 10

Working with Files
Objective:

At the end of this session students shall be learning:

 Introduction of Creating a Stream,

 Opening a File,

 Closing a File,

 Checking For Failure With File Commands,

 Detecting the End-of-file,

 file Pointers and their Manipulation,

 Reading/Writing a character From a File,

 Write()and read() Functions,

 Buffers and Sychronization,

 Other Functions,

 Random Access File Processing,

 Updating a File :Random Access,

 Command Line Arguments.

Structure:

10.1. Introduction Creating a Stream,

10.2. File Stream Classes

10.3. Steps of file operations

10.4. Finding End of file

10.5. File opening modes

10.6. File Pointers and their Manipulation,

10.7. Sequential Input and Output Operations

10.8. Error handling during file operations

10.9. Random Access

10.10. Summary.

10.11. Self Assessment Questions

131

10.1 Introduction of creating a Stream.

When a large amount of data is to be handled in such situations floppy disk or hard disk are

needed to store the data .The data is stored in these devices using the concept of files. A file is a

collection of related data stored in a particular area on a disk. Programs can be designed to

perform the read and write operations on these files.

The I/O system of C++ handles file operations which are very much similar to the console

input and output operations. It uses file streams as an interface between the programs and files.

The stream that supplies data to the program is called input stream and the one that receives

data from the program is called output stream. In other words input stream extracts data from

the file and output stream inserts data to the file.

The input operation involves the creation of an input stream and linking it with the program

and input file. Similarly, the output operation involves establishing an output stream with the

necessary links with the program and output file.

Fig. 10.1 File Input and output stream

10.2 File Stream Classes:

The I/O system of C++ contains a set of classes that defines the file handling methods. These

include ifstream, ofstream and fstream.These classes are derived from fstreambase and

form the corresponding iostream class. These classes

,designed to manage the disk files are declared in fstream and therefore this file is included in

any program that uses files.

132

10.3 Steps of File Operations:

For using a disk file the following things are necessary

1. Suitable name of file

2. Data type and structure

3. Purpose

4. Opening Method

Table 10.1 Detail of file stream classes

Class Contents

filebuf Its purpose is to set the file buffers to read and write. Contains
Openprot constant used in the open() of file stream classes.Also contain close() and open() as

members.

fstreambase Provides operations common to file streams.Serves as a base for
fstream,ifstream and ofstream class.Contains open() and close()

functions.

ifstream Provides input operations.Contains open() with default input
mode.Inherits the functions get(),getline(),read(),seekg(),tellg()

functions from istream.

ofstream Provides output operations.Contains open() with default output

mode.Inherits put(),seekp(),tellp() and write() functions from ostream.

fstream Provides support for simultaneous input and output operations.Contains
open with default input mode.Inherits all the functions from istream and

ostream classes through iostream.

The filename is a string of characters that makeup a valid filename for the operating system. It

may contain two parts, primary name and optional period with extension.

133

Examples are Input.data, Test.doc etc. For opening a file firstly a file stream is created and

then it is linked to the filename.A file stream can be defined using the classes ifstream,

ofstream and fstream that contained in the header file fstream.The class to be used depends

upon the purpose whether the write data or read data operation is to be performed on the file.

A file can be opened in two ways:

(a) Using the constructor function of class.

(b) Using the member function open() of the class.

The first method is useful only when one file is used in the stream. The second method is

used when multiple files are to be managed using one stream.

10.3.1 Opening Files using Constructor:

While using constructor for opening files, filename is used to initialize the file stream object.

This involves the following steps

(i) Create a file stream object to manage the stream using the appropriate class i.e the

class ofstream is used to create the output stream and the class create the input

stream.

(ii) Initialize the file object using desired file name.

For example, the following statement opens a file named “results” for output:

of stream outfile(“results”); //output only

This create outfile as an ofstream object that manages the output stream. Similarly, the

following statement declares infile as an ifstream object and attaches it to the file data for

reading (input).

If stream infile (“data”);//input only

The same file name can be used for both reading and writing data.For example

Program1

…………………..

……………….

ofstream outfile (“salary”);

134

//creates outfile and connects salary to it

………………

…………………..

Program 2

………………

……………

ifstream infile (“salary”);

//creates infile and connects salary to it

………………..

………………….

The connection with a file is closed automatically when the stream object expires i.e when a

program terminates. In the above statement ,when the program 1 is terminated, the salary

file is disconnected from the outfile stream. The same thing happens when program 2

terminates.

Instead of using two programs, one for writing data and another for reading data ,a

single program can be used to do both operations on a file.

…………

…………….

outfile.close(); //disconnect salary from outfile and connect to infile ifstream infile (“salary”);

………….

…………… infile.close();

The following program uses a single file for both reading and writing the data .First it take data

from the keyboard and writes it to file.After the writing is completed the file is closed.The

program again opens the same file read the information already written to it and displays the

same on the screen.

135

PROGRAM 10.1: WORKING WITH SINGLE FILE

//Creating files with constructor function #include <iostream.h>

#include <fstream.h> int main()

{

ofstream outf(“ITEM”); cout <<”enter item name: “; char name[30];

cin >>name;

outf <<name <<”\n”;

cout <<”enter item cost :”; float cost;

cin >>cost;

outf <<cost <<”\n”; outf.close(); ifstream inf(“item”); inf >>name;

inf >>cost;

cout <<”\n”;

cout <<”item name : “ << name <<”\n”; cout <<”item cost: “ << cost <<”\n”; inf.close();

return 0;

}

10.3.2 Opening Files using open()

The function open() can be used to open multiple files that uses the same stream object. For

example to process a set of files sequentially,in such case a single stream object can be created

and can be used to open each file in turn. This can be done as follows;

File-stream-class stream-object; stream-object.open (“filename”);

The following example shows how to work simultaneously with multiple files

PROGRAM 10.2: WORKING WITH MULTIPLE FILES

//Creating files with open() function #include <iostream.h> #include<fstream.h>

int main()

{

ofstream fout; fout.open(“country”); fout<<”United states of America \n”; fout<<”United

Kingdom”; fout<<”South korea”;

fout.close(); fout.open(“capital”); fout<<”Washington\n”; fout<<”London\n”; fout<<”Seoul

\n”; fout.close();

const int N =80; char line[N];

136

ifstream fin;

fin.open(“country”); cout<<”contents of country file \n”; while (fin)

{

fin.getline(line,N); cout<<line;

}

fin.close(); fin.open(“capital”);

cout<<”contents of capital file”; while(fin)

{

fin.getline(line,N); cout<<line;

}

fin.close(); return 0;

}

10.4 Finding End of File:

While reading a data from a file,it is necessary to find where the file ends i.e end of file.The

programmer cannot predict the end of file,if the program does not detect end of file,the program

drops in an infinite loop.To avoid this,it is necessary to provide correct instruction to the

program that detects the end of file.Thus when end of file of file is detected,the process of

reading data can be easily terminated. An ifstream object such as fin returns a value of 0 if

any error occurs in the file operation including the end-of – file condition.Thus the while loop

terminates when fin returns a value of zero on reaching the end-of –file condition.There is an

another approach to detect the end of file condition.

The statement if(fin1.eof() !=0)

{

exit(1);

}

returns a non zero value if end of file condition is encountered and zero otherwise.Therefore

the above statement terminates the program on reaching the end of file.

137

10.5 File Opening Modes:

The ifstream and ofstream constructors and the function open() are used to open the files.Upto

now a single arguments a single argument is used that is filename.However,these functions

can take two arguments, the second one for specifying the file mode.The general form of

function open() with two arguments is:

stream-object.open(“filename”,mode);

The second argument mode specifies the purpose for which the file is opened. The prototype

of these class member functions contain default values for second argument and therefore

they use the default values in the absence of actual values. The default values are as follows

:

ios:: in for ifstream functions meaning open for reading only. ios::out for ofstream

functions meaning open for writing only.

The file mode parameter can take one of such constants defined in class ios.The following

table lists the file mode parameter and their meanings.

Table 10. File Mode Operation

Parameter Meaning

ios::app Append to end-of-file

ios::ate Go to end-of-file on opening

ios::binary Binary file

ios::in Open file for reading only

ios::nocreate Open fails if file the file does not exist

ios::noreplace Open fails if the file already exists

ios::out Open file for writing only

ios::trunk Delete the contents of the file if it exists

10.6 File Pointers and Manipulators:

Each file has two pointers known as file pointers,one is called the input pointer and the other is

called output pointer..The input pointer is used for reading the contents of of a given file

location and the output pointer is used for writing to a given file location. Each time an input

or output operation takes place,the appropriate pointer is automatically advanced.

138

10.6.1 Default actions:

When a file is opened in read-only mode,the input pointer is automatically set at the beginning

so that file can be read from the start.Similarly when a file is opened in write-only mode the

existing contents are deleted and the output pointer is set at the beginning. This enables us to

write the file from start.In case an existing file is to be opened in order to add more data, the file

is opened in 'append' mode.This moves the pointer to the end of file.

10.6.2 Functions for Manipulations of File pointer:

All the actions on the file pointers takes place by default. For controlling the movement of

file pointers file stream classes support the following functions

• seekg() Moves get pointer (input)to a specified location.

• seekp() Moves put pointer (output) to a specified location.

• tellg() Give the current position of the get pointer.

• tellp() Give the current position of the put pointer.

For example, the statement infile. seekg(10);

moves the pointer to the byte number 10.The bytes in a file are numbered beginning from

zero.Therefore ,the pointer to the 11th byte in the file.Consider the following statements:

ofstream fileout; fileout.open(“hello”,ios::app); int p=fileout.tellp();

On execution of these statements,the output pointer is moved to the end of file “hello”

And the value of p will represent the number of bytes in the file.

10.10.3 Specifying the Offset:

'Seek' functions seekg() and seekp() can also be used with two arguments as follows: seekg

(offset,refposition);

seekp (offset,refposition);

The parameter offset represents the number of bytes the file pointer is to be moved from the

location specified by the parameter reposition.

The reposition takes one of the following three constants defined in the ios class:

139

ios::beg

Start of file

ios::cur

Current position of the pointer ios::end End of file

The seekg() function moves the associated file's 'get' pointer while the seekp() function

moves the associated file's 'put 'pointer.The following table shows some sample pointer offset

calls and their actions.fout is an ofstream object.

Table 10.3 Pointer offset calls

Seek call Action

fout.seekg(o,ios::beg) Go to start

fout.seekg(o,ios::cur) Stay at the current position

fout.seekg(o,ios::end) Go to the end of file

fout.seekg(m,ios::beg) Move to (m+1)th byte in the file

fout.seekg(m,ios::cur) Go forward by m byte from current position

fout.seekg(-m,ios::cur) Go backward by m bytes from current position.

fout.seekg(-m,ios::end) Go backward by m bytes from the end

10.7 Sequential Input and Output Operations:

The file stream classes support a number of member functions for performing the input and

output operations on files.One pairs of functions,put() and get() are designed for handling a

single character at a time.Another pair of functions, write(),read() are designed to write and

read blocks of binary data.

10.7.1 put() and get() Functions:

The function put() writes a single character to the associated stream.Similarly,the function

get() reads a single character from the associated stream.The following program illustrates

how the functions work on a file.The program requests for a string.On receiving the string,the

program writes it,character by character,to the file using the put() function in a for loop.The

length of string is used to terminate the for loop.

The program then displays the contents of file on the screen.It uses the function get() to fetch a

character from the file and continues to do so until the end –of –file condition is reached.The

character read from the files is displayed on screen using the operator <<.

140

PROGRAM 10.3: I/O OPERATIONS ON CHARACTERS

#include <iostream.h> #include <fstream.h> #include<string.h>

int main()

{

char string[80]; cout<<”enter a string \n”; cin>>string;

int len =strlen(string); fstream file;

file.open(“TEXT”. Ios::in | ios::out);

for (int i=o;i<len;i++) file.put(string[i]); file .seekg(0);

char ch; while(file)

{

file.get(ch); cout<<ch;

}

return 0;

}

10.7.2 write() and read () functions:

The functions write() and read(),unlike the functions put() and get(), handle the data

in binary form. This means that the values are stored in the disk file in same format in

which they are stored in the internal memory.An int character takes two bytes to store

its value in the binary form, irrespective of its size. But a 4 digit int will take four

bytes to store it in the character form. The binary input and output functions takes the

following form:

infile.read ((char) & V,sizeof (V));

outfile.write ((char) & V ,sizeof (V));

These functions take two arguments.The first is the address of the variable V, and the

second is the length of that variable in bytes.The address of the variable must be cast

to type char(i.e pointer to character type).The following program illustrates how

these two functions are used to save an array of floats numbers and then recover them

141

for display on the screen.

PROGRAM 10.4:

// I/O OPERATIONS ON BINARY FILES

#include <iostream.h>

#include <fstream.h>

#include <iomanip.h>

const char filename =”Binary”; int

main()

float height[4] ={ 175.5,153.0,167.25,160.70};

ofstream outfile; outfile.open(filename);

outfile.write((char) & height,sizeof(height));

outfile.close();

for (int i=0;i<4;i++)

height[i]=0; ifstream infile;

infile.open(filename);

infile.read ((char) & height,sizeof (height)); for

(i=0;i<4;i++)

{

cout.setf(ios::showpoint); cout<<setw(10)<<setprecision(2)<<height[i];

}

infile.close(); return 0;

}

10.8 Error Handling during File Operations:

There are many problems encounterd while dealing with files like

• a file which we are attempting to open for reading does not exist.

• The file name used for a new file may already exist.

• We are attempting an invalid operation such as reading past the end of file.

• There may not be any space in the disk for storing more data.

• We may use invalid file name.

• We may attempt to perform an operation when the file is not opened for that purpose.

142

The C++ file stream inherits a 'stream-state 'member from the class ios. This member records

information on the status of a file that is being currently used. The stream state member uses

bit fields to store the status of error conditions stated above. The class ios support several

member functions that can be used to read the status recorded in a file stream.

Table 10.4 Error Handling Functions

Function Return value and meaning

eof() Returns true(non zero value) if end of file is encountered while

reading otherwise returns false(zero).

fail() Returns true when an input or output operation has failed .

bad() Returns true if an invalid operation is attempted or any
unrecoverable error has occurred.However,if it is false,it may be possible to

recover from any other error reported and continues operation.

good() Returns true if no error has occurred.This means all the above
functions are false.For instance,if file.good() is true.all is well with the stream

file and we can proceed to perform I/O operations.When it returns false,no

further operations is carried out.

These functions can be used at the appropriate places in a program to locate the status of a file

stream and thereby to take the necessary corrective measures. Example:

……………

…………..

ifstream infile;infile.open(“ABC”); while(!infile.fail())

{

…………

… (process the file)

…………….

}

if (infile.eof())

{

… (terminate the program normally)

}

else

143

if (infile.bad())

{

… ... (report fatal error)

}

else

{

infile.clear(); //clear error state

……….

……….

}

……..

………..

The function clear() resets the error state so that further operations can be attempted.

10.9 Command Line Arguments:-

Like C,C++ also support the feature of command line argument i.e passing the arguments at

the time of invoking the program.They are typically used to pass the names of data files.

Example:

C>exam data results

Here exam is the name of file containing the program to be executed and data and results are

the filenames passed to program as command line arguments. The command line arguments

are typed by the user and are delimited by a space. The first argument is always the filename

and contains the program to be executed. The main() functions which have been using up to

now without any argument can take two arguments as shown below:

main(int argc,char argv[])

The first argument argc repesents the number of arguments in command line. The second

144

argument argv is an array of character type pointers that points to the the command line

arguments.The size of this array will be equal to the value of argc.

For instance, for command line C>exam data results

The value of argc would be 3 and the argv would be an array of three pointers to string as

shown:

argv[0] exam argv[1] data argv[2] results

The argv[0] alwayas represents the command name that invokes the program.The character

pointer argv[1], and argv[2] can be used as file names in the file opening statements as shown:

…………

…………

inline.open(argv[1]); //open data file for reading

…………..

…………..

outfile.open(argv[2]); //open result file for writing

…………..

…………..

10.9 Random Access:

Every file maintains two pointers called get_pointer (in input mode file) and put_pointer (in

output mode file) which tells the current position in the file where reading or writing will

145

takes place. (A file pointer in this context is not like a C++ pointer but it works like a book-

mark in a book.). These pointers help attain random access in file. That means moving directly

to any location in the file instead of moving through it sequentially.

There may be situations where random access in the best choice. For example, if you have to

modify a value in record no 20, then using random access techniques, you can place the file

pointer at the beginning of record 20 and then straight-way process the record. If sequential

access is used, then you'll have to unnecessarily go through first twenty records in order to

reach at record 20.

10.9.1 The seekg(), seekp(), tellg() and tellp() Functions:

In C++, random access is achieved by manipulating seekg(), seekp(), tellg() and tellp()

functions. The seekg() and tellg() functions allow you to set and examine the get_pointer, and

the seekp() and tellp() functions perform these operations on the put_pointer.

The seekg() and tellg() functions are for input streams (ifstream) and seekp() and tellp()

functions are for output streams (ofstream). However, if you use them with an fstream object

then tellg() and tellp() return the same value. Also seekg() and seekp() work the same way in an

fstream object. The most common forms of these functions are:

seekg()

istream & seekg(long);

istream & seekg(long, seek_dir);

Form 1

Form 2

seekp() ofstream & seekp(long);

ofstream & seekp(long, seek_dir);

Form 1

Form 2

tellg() long tellg()

tellp() long tellp()

The working of seekg() & seekp() and tellg() & tellp() is just the same except that seekg() and

tellg() work for ifstream objects and seekp() and tellp() work for ofstream objects. In the

above table, seek_dir takes the definition enum seek_dir { beg, cur, end};.

The seekg() or seekp(), when used according to Form 1, then it moves the get_pointer or

put_pointer to an absolute position. Here is an example:

ifstream fin; ofstream fout;

:// file opening routine

fin.seekg(30); // will move the get_pointer (in ifstream) to byte number 30 in the file

fout.seekp(30); // will move the put_pointer (in ofstream) to byte number 30 in the file

146

When seekg() or seekp() function is used according to Form 2, then it moves the get_pointer

or put_pointer to a position relative to the current position, following the definition of seek_dir.

Since, seek_dir is an enumeration defined in the header file iostream.h, that has the following

values:

ios::beg, // refers to the beginning of the file ios::cur, // refers to the current position in

the file ios::end} // refers to the end of the file

Here is an example.

fin.seekg(30, ios::beg); // go to byte no. 30 from beginning of file linked with fin

fin.seekg(-2, ios::cur); // back up 2 bytes from the current position of get pointer

fin.seekg(0, ios::end);// go to the end of the file

fin.seekg(-4, ios::end); // backup 4 bytes from the end of the file

The functions tellg() and tellp() return the position, in terms of byte number, of put pointer and

get_pointer respectively, in an output file and input file.

C++ File Pointers and Random Access Example

Here is an example program demonstrating the concept of file pointers and random access in a

C++ program:

/ C++ File Pointers and Random Access

* This program demonstrates the concept

* of file pointers and random access in

* C++ / #include<fstream.h> #include<conio.h> #include<stdlib.h>

#include<stdio.h> #include<string.h> class student

{

int rollno;

char name[20]; char branch[3]; float marks; char grade; public:

void getdata()

{

cout<<"Rollno: "; cin>>rollno; cout<<"Name: "; cin>>name; cout<<"Branch: ";

cin>>branch;

147

cout<<"Marks: "; cin>>marks; if(marks>=75)

{

grade = 'A';

}

else if(marks>=60)

{

grade = 'B';

}

else if(marks>=50)

{

grade = 'C';

}

else if(marks>=40)

{

}

else

{

}

grade = 'D';

grade = 'F';

void putdata()

{

cout<<"Rollno: "<<rollno<<"\tName: "<<name<<"\n"; cout<<"Marks: "<<marks<<"\tGrade:

"<<grade<<"\n";

}

148

int getrno()

{

return rollno;

}

void modify();

}stud1, stud;

void student::modify()

{

cout<<"Rollno: "<<rollno<<"\n";

cout<<"Name: "<<name<<"\tBranch: "<<branch<<"\tMarks: "<<marks<<"\n";

cout<<"Enter new details.\n"; char nam[20]=" ", br[3]=" "; float mks;

cout<<"New name:(Enter '.' to retain old one): "; cin>>nam;

cout<<"New branch:(Press '.' to retain old one): "; cin>>br;

cout<<"New marks:(Press -1 to retain old one): "; cin>>mks;

if(strcmp(nam, ".")!=0)

{

strcpy(name, nam);

}

if(strcmp(br, ".")!=0)

{

strcpy(branch, br);

}

if(mks != -1)

{

marks = mks; if(marks>=75)

{

grade = 'A';

}

else if(marks>=60)

{

grade = 'B';

}

149

else if(marks>=50)

{

grade = 'C';

}

else if(marks>=40)

{

}

else

{

}

}

}

grade = 'D';

grade = 'F';

void main()

{

clrscr();

fstream fio("marks.dat", ios::in | ios::out); char ans='y';

while(ans=='y' || ans=='Y')

{

stud1.getdata();

fio.write((char)&stud1, sizeof(stud1)); cout<<"Record added to the file\n"; cout<<"\nWant to

enter more ? (y/n).."; cin>>ans;

}

clrscr(); int rno; long pos;

char found='f';

cout<<"Enter rollno of student whose record is to be modified: "; cin>>rno;

150

fio.seekg(0);

while(!fio.eof())

{

pos = fio.tellg();

fio.read((char)&stud1, sizeof(stud1)); if(stud1.getrno() == rno)

{

stud1.modify(); fio.seekg(pos);

fio.write((char)&stud1, sizeof(stud1)); found = 't';

break;

}

}

if(found=='f')

{

cout<<"\nRecord not found in the file..!!\n"; cout<<"Press any key to exit...\n";

getch();

exit(2);

}

fio.seekg(0);

cout<<"Now the file contains:\n"; while(!fio.eof())

{

}

fio.close();

getch();

fio.read((char)&stud, sizeof(stud)); stud.putdata();

Here are the sample runs of the above C++ program:

10.10. Summary:

Stream is nothing but flow of data .In object oriented programming the streams are controlled

151

using classes. The istream and ostream classes control input and output functions respectively.

The iostream class is also a derived class .It is derived from istream and ostream classes. There

are three more derived classes istream_withassign,ostream_withassign and

iostream_withassign.They are derived from istream,ostream and iostream respectively. .There

are two methods constructor of class and member function open() of the class for opening the

file. The class ostream creates output stream objects and ifstream creates input stream objects.

The close() member function closes the file. When end of file is detected the process of readind

data can be easily terminated.The eof() function is used for this purpose.The eof() stands for

end of file.The eof() function returns 1 when end of file is detected. The seekg () functions

shifts the associated file's input file pointer and output file pointer. The put() and get()

functions are used for reading and writing a single character whereas write() and read() are

used to read or write block of binary data.

In C++, random access is achieved by manipulating seekg(), seekp(), tellg() and tellp()

functions. The seekg() and tellg() functions allow you to set and examine the get_pointer, and

the seekp() and tellp() functions perform these operations on the put_pointer.

10.11. Self Assessment Questions:

1. What are input and output streams?

2. What are the various classes available for file operations.

3. What is a file mode ?describe the various file mode options available.

4. Describes the various approaches by which we can detect the end of file condition.

5. What do you mean by command line arguments?

152

Chapter 11

Template

Objective:

At the end of this session students shall be learning:

 Introduction,

 Generic Functions,

 A Function with Two Generic Data Types,

 Explicitly Overloading a generic Function,

 Overloading Function Templates,

 using Standard Parameters with Template Function,

 Generic Functions Restrictions,

 Generic Class,

 Using Default Arguments with Template Classes,

 Template Parameters,

 Template Specialization,

 The Typename and Export Keywords

Structure:

11.1 Introduction

11.2 Class templates

11.3 Multiple parameters in class templates

11.4 Function templates

11.5 Multiple parameters in function templates

11.6 Overloading of template functions

11.7 Member function templates

11.8 Non-type template arguments

11.9. Summary

 11.10. Self Assessment Questions

153

11.1 Introduction

Template is a new concept which enables us to define generic and functions and thus provides

support for generic programming. Generic programming is an approach where generic types

are used as parameters in algorithms so that they work for a variety of suitable data types and

data structures.

A template can be used to create a family of classes or functions. For example, a class template for

an array class would enable us to create arrays of various data types such as int array and float

array .similarly, we can define a template for a function, say mul(),hat would help us create

versions of mul() for multiplying int, float and double type values.

A template can be considered as a kind of macro. When an object of a specific type is define for

actual use, the template definition for that class is substitute with the required data type. Since

a template is defined with a parameter that would be replaced by a specified data type at the

time of actual use of the class or function, the templates are sometimes called parameterized

class or functions.

11.2 Class Template:

Consider a vector class defined as follows: Class vector

{

int v ; int size; public:

vector(int m) // create a null vector

{

v=new int[size = m]; for(int i=0;i<size;i++) v[i]=0;

}

vector(int a) //create a vector from an array

{

for(int i=0;i<size;i++) v[i]=a[i];

}

Template<class T> class classname

{

…

//class member specification

//with anonymous type T

154

//whenever appropriate

….

};

The template definition of vector class shown below illutrates the syntax of a template:

template<class T> class vector

{

T v; // type T vector int size;

public: vector(int m)

{

v=new T [size = m]; for(int i=0; i<size; i++) v[i] =0;

}

vector (T a)

{

for(int i=0;i<size; i++) v[i]=a[i];

}

T operator(vector &y)

{

T sum =0;

for(int i=0;i<size;i++) sum+=this->v[i]y-v[i]; return sum;}

};

Remember:

The class template definition is very similar to an ordinary class definition except the prefix

template<class T> and the use of type T. This prefix tells the complier that we are going to

declare a template and use T as a type name in the Declaration. Thus, vector has become a

parameterized class with the type T as its parameters. T may be substituted by any data type

including the user defined types.

Now we can create vectors for holding different data types.

155

A class created from a class template is called a template class. The syntax for defining an

object of a template class is:

Classname<type> objectname (arglist);

This process of creating a specific class from a class template is called instantiation. The

complier will perform the error analysis only when an instantiating take place. It is, therefore,

advisable to create and debug an ordinary class before converting it in to template.

Example of class template #include <iostream> using namespace std; const size=3;

template<class T>

class vector

{

Tv; public: vector()

{

v=new T[size]; for(int i=0;i<size;i++) v[i]=0;

}

int operator9vector &y) //scalar product

{

int sum=0;

for(int i=0;i<size;i++) sum+=this->v[i]y-v[i]; return sum;

}

};

The vector class can store an array of int numbers and perform the scalar product of two int

vector as shown below:

int main()

{

int x[3]={1,2,3};

int y[3]={4,5,6};

vector v1(3); //create a null vector of 3 integers vector v2(3);

v1=x; //create v1 from the array x v2=y;

int R=v1v2; cout<<”R=”r; return 0;

}

156

Now suppose we want to define a vector that can store an array of float value. We can do this

simply replacing the appropriate int declaration with float in the vector class. This means that

we can have to redefine the entire class all over again.

Assume that we want to define a vector class with the data type as a parameter and then use

this class to create a vector of any data type instead of defining a new class every time. The

template mechanism enables us to achieve this goal.

As mentioned earlier, template allows us to define generic classes. It is simple process to

create a generic class using a template with an anonymous type. The general format of a class

template is:

vector(T a)

{

for(int i=0;i<size;i++) v[i]=a[i];

}

T operator(vector &y)

{

T sum=0;

for(int i=0;i<size;i++) sum+=this->v[i]y.v[i]; return sum;

}

};

int main()

{

int x[3]={1,2,3};

int y[3]={4,5,6};

vector<int> v1; vector<int> v2; v1=x;

v2=y;

int R= v1v2; cout<<”R=”<<r<<”\n”; return 0;

}

The output would be: R=32

Another Example: #include <iostream> using namespace std; const size=3; template<classT>

class vector

157

{

Tv; public:

vector ()

{

v=new T[size]; for(inti=0;i<size;i++) v[i]=0;

}

vector(T a)

{

for(int i=0;i<size;i++) v[i]=a[i];

}

T operator(vector &y)

{

T sum=0; for(int=0;i<size;i++) sum+=this->v[i]y.v[i]; return sum;

}

};

Int main()

{

float x[3]={1.1,2.2,3.3};

float y[3]={4.4,5.5,6.6};

vector <float> v1; vector <float>v2; v1=x;

v2=y;

float R=v1v2; cout<<”R=”<<R<<”\n”; return 0;

}

The output would be:

R=311.720001

11.3 Class Templates with Multiple Parameters

We can use more than one generic data type in a class. They are declared as a comma- separated

list within the template specification as shown below:

Template<class T1, class t2, …..> class classname

{

158

……

……

…….

}

;

Example with two generic data types: #include <iostream>

using name space std; template<class t1,class t2> class Test

{

T1 a;

T2 b;

public:

test(T1 x, T2 y)

{

a=x; b=y;

}

void show()

{

cout<<a<<”and”<<<<”\n”;

}

};

int main()

{

Test<float,int> test1(1.23,123); Test<int,char> test2(100,'W'); test1.show();

test2.show(); return 0;

};

Output would be:

1.23 and 123

100 and W

11.4 Function Templates

Like class templates, we can also define function templates that cold be used to create a

family of functions with different argument types. The general format of a function template

is:

159

template<class T>

returntype functionname (argument of type T)

{

//

//body of function

//with Type T

//whenever appropriate

//……………

}

The function template syntax is similar to that of the class template except that we are

defining functions instead of classes. We must use the template parameter T as and when

necessary in the function body and its argument list.

The following example declares a swap () function template that will swap two values of a

given type of data.

template <class T> void swap(T&x , T&y)

{

T temp =x; x=y; y=temp;

}

This essential declares a set of overloading functions, one for each type of data. We can invoke

the swap () function likes any ordinary function .for example, we can apply the swap ()

function as follows:

void f (int m , int n , float b)

{

swap (m , n); //swap two integer values swap (a , b); //swap two float values

//……..

}

This will generate a swap () function template for each set of argument types. Example

will show how a template function is defined and implemented.

An example:

#include <iostream> using namespace std; Template <class T> void swap (T &x, T &y)

{

T temp=x; x=y;

160

y=temp;

}

void fun(int m, int n, float a, float b)

{

cout<<”m and n before swap:”<<m<<””<<n<<”\n”; swap(m,n);

cout<<”m and n after swap:”<<m<<””<<n<<”\n”; cout<<”a and b before

swap:”<<a<<””<<b<<”\n”; swap(a,b);

cout<<”a and b after swap:”<<a<<””<<b<<”\n”;

}

int main ()

{ fun(100,200,11.22,33.44);

return 0;

}

Output would be:

m and n before swap : 100 200

m and n after swap : 200 100

a and b before swap: 11.22 33.439999

a and b after swap : 33.439999 11.22

Another function often used is sort () for sorting arrays of various types such as int and double.

The following shows a function template for bubble sort:

Template<class T> bubble(T a[] , int n)

{

for(int i=0 ; i<n-1 ; i++) for(int j=n-1 ; i<j ; j--)

if (a[j] < a[j-1])

{

T temp = v[j]; v[j]=v[j-1]; v[j-1]=temp;

}

}

Note that the swapping statements T temp = v[j];

v[j]=v[j-1]; v[j-1]=temp;

May be replaced by the statement swap(v[j], v[j-1]);

161

Where swap () has been defined as a function template. Here is another example where a

function returns a value. template<class T>

T max (T x, T y)

{

return x>y ? x : y;

}

A function generated from a function is called a template function. Program of Bubble Sort

demonstrates the use of two template functions in nested from for implementing the bubble

sort algorithm.

#include <iostream> using namespace std ; template<class T> void bubble (T a[], int n)

{

for (int i=0; i<n-1; i++)

{

for (int j=n-1; i<j; j--)

i f (a[j] < a[j-1])

{

swap (a [j],a[j-1];// calls template function

}

}

templte<class X>

void swap(X &a, X &b)

{

x temp=a; a= b; b= temp;

}

int main()

{ int x[5] = { 10,50,30,40,20,};

float y[5] ={1.1,5.5,3.3,4.4,2.2,};

bubble (x , 5); // calls template function for int values

bubble (y , 5); // calls template function for floate values

cout << “sorted x-array:”; for (int i=0; i<5; i + +) cout << x[i] << “ ” ;

cout << endl ;

162

cout << “ Sorted y-array : ” ; for (int j=0; j<5; j + +) cout << y[j]

 << “ ”;

cout << endl ;

return 0;

}

The output would be:

sorted x-array: 10 20 30 40 50

sorted y- array: 1.1 2.2 3.3 4.4 5.5 Another example:

#include <isotream> #include <iomanip> #include <cmath> using namespace std; template

<class T>

void rootes(T a,T b,T c)

{

T d = bb - 4ac;

if (d= = 0) // Roots are equal

{

cout << “R1 = R2 = “ << -b/(2a) << endl;

}

else if (d>0) //two real roots

{

cout<<”roots are real \n”; float R =sqrt (d);

float R1 = (-b+R)/(2a); float R2 = (-b+R)/(2a);

cout<< “R1 = “<< R1 << “ and”; cout <<R2 = “<< R2 << endl;

}

else // roots are complex

{

cout <<”roots are complex \n”; float R1 = -b/(2a);

float R2 = sqrt(-d)/(2a);

cout <<” real part = “ << R1 << endl; cout<< “imaginary part =” << R2; cout<< endl;

}

}

int main()

163

{

cout<< “integer coefficients \n”; roots(1,-5 ,6);

cout << “\n float coefficients \n”; roots (1.5, 3.6, 5.0);

return 0;

}

Output would be :

integer coefficients roots are real

R1= 3 and R2 =2

float coefficients roots are complex

real part = -1.2 imaginary part = 1.3757985

11.5 Function Template with Multiple Parameters

Like template classes, we can use more than one generic data type in the template statement,

using a comma-separated list shown below:

template<class T1 , class T2, …..>

returntype functionname(arguments of types T1, T2, …)

{

……

……

……

}

Example with two generic types in template functions:

#inlude <iostream>

#include<string> using

namespace std;

template<class T1,class T2>

void display(T1 x, T2 y)

{

cout<<x<<” “<<y<<”\n”;

}

int main()

164

{

display(1999, “EBG”);

display(12.34, “1234);

return 0;

}

The output would be:

1999 EBG

12.34 1234

11.6 Overloading of Template Functions:

A template function may be overloaded either by template functions or ordinary

functions of its name. In such cases, the overloading resolution is accomplished as

follows:

1. Call an ordinary function that has an exact match.

2. Call a template function could be created with an exact match.

3. Try normal overloading resolution to ordinary functions and call the one

that matches.

An error is generated if no match is found. Note that no automatic conversions are

applied to arguments on the template functions. Example for showing how a

template function is overloaded with an explicit function.

#include <iostream>

#include <string> using

namespace std; template

<class T> void

display(T x)

{

cout<<”template display:” << x<< “\n”;

}

void display (int x)

{

cout<<”Explicit display: “<< x <<”\n”;

}

165

int main()

{

display(100); display(12.34);

display('c'); return 0;

}

The output would be:

Explict display:100 template

display:12.34 template display:c

Remember:

The call display (100) invokes the ordinary version of display() and not the template version.

11.7 Member Function Templates:

When we create a class template for vector, all the member functions were defined as inline

which was not necessary. We would have defined them outside the class as well. But

remember that the member functions of the template classes themselves are parameterized by

the type argument and therefore these functions must be defined by the function templates. It

takes the following general form:

Template <class T>

returntype classname <T> :: functionname(arglist)

{

……

……..

…….

}

The vector class template and its member fnctions are redefined as follow:

// class template……….

template<class T>

class vector

{

Tv; int size; public:

vector(int m); vector(T

a); T operator(vector &

y);

166

};

//member function templates

template<class T> vector<T>

:: vector (int m);

{

v=new T[size=m];

for(int i=0; i<size ; i++)

v[i]= 0;

}

template<class T> vector

<T>::vector(ta)

{

for(int i=0; i<size ; i++)

v[i]=a[i];

}

template< class T >

T vector < T > :: operator(vector & y)

{

T sum =0;

for (int i=0; i< size ; i++) sum

+= this -> v[i]y.v[i]; return

sum;

}

11.8 Non-Type Template Arguments

We have seen that a template can have multiple arguments. It is also possible to use non-type

arguments. That is, in addition to the type argument T, we can also use other arguments such as

strings, function names, constant expressions and built-in types.

Consider the following example: Template<class T, int size> Class array

166

{

T a[size];//automatic array initialization

//…………

//………..

};

This template supplies the size of the array as an argument. This implies that the size of the array

is known to the complier at the compile time itself. The arguments must be specified whenever

a template class is created. Example:

Array <int,10> a1; Array <float,5> a2; Array <char,20> a3;

//array of 10 integers

//array of 5 floats

//string of size 20

11.9. Summary

C++ supports a mechanism known as template to implement the concept of generic

programming. Template allows us to generate a family of classes or a family of functions to

handle different data types. Template classes and functions eliminate code duplication for

different types and thus make the program development easier and more manageable. We can

use multiple parameters in both the class templates and function templates. A specific class

created from a class template is called a template class and the process of creating a template

class is known as instantiation. Like other functions, template functions can be overloaded.

Member function of a class template must be defined as function templates using the

parameters of the class template. We may also use non type parameters such basic or derived

data types as arguments templates.

11.10. Self Assessment Questions

1. What is generic programming? How is it implemented in c++?

2. A template can be considered as a kind of macro. Then, what is the difference

between them?

3. Distinguish between overloaded functions and function templates.

4. Distinguish between the term class template and template class.

5. A class template is known as a parameterized class comment.

6. Write a function template for finding the minimum value contained in an array.

7. Write a class template to represent a generic vector. Include member functions to

167

perform the following tasks:

(a) To create the vector

(b) To modify the value of a given element

(c) To multiply by a scalar values

(d) To display the vector in the form (10, 20, 30 …)

168

Chapter 12

Exception Handling

Objective:

At the end of this session students shall be learning:

 Introduction,

 The STI Programming Models,

 Containers,

 Algorithms,

 Iterators,

 Function Objects,

 Allacators,

 Adaptors

Structure:

12.1 Introduction

12.2 Principles of Exception handling

12.3 Throwing mechanism

12.4 Catching mechanism

12.5 Re-throwing an Exception

12.6 Specifying Exception

12.7 Summary

12.8 Self Assessment Questions

12.1 Introduction:

Usually there are mainly two type of bugs, logical errors and syntactic errors. The logical

errors occur due to poor understanding of problem and syntactic errors arise due to poor

understanding of language. There are some other problems called exceptions that are run time

anomalies or unused conditions that a program may encounter while executing. These

anomalies can be division by zero,access to an array outside of its bounds or running out of

memory or disk space. When a program encounters an exceptional condition it is important to

identify it and dealt with it effectively. An exception is an object that is sent from the part of the

program where an error occurs to that part of program which is going to control the error.

169

12.2 Principles of Exception handling:-

Exceptions are basically of two types namely, synchronous and asynchronous exceptions.

Errors such as “out of range index” and “over flow” belongs to synchronous type exceptions.

The errors that are caused by the events beyond the control of program (such as keyboard

interrupts) are called asynchronous exceptions.

The purpose of exception handling mechanism is to detect and report exceptional

circumstances so that appropriate action can be taken. The mechanism for exception handling is

1. Find the problem (hit the exception).

2. Inform that an error has occurred (throw the exception).

3. Receive the error information (Catch the exception).

4. Take corrective actions (Handle the exception).

The error handling code mainly consists of two segments, one to detect error and throw

exceptions and other to catch the exceptions and to take appropriate actions.

12.3 Exception handling mechanism:-

C++ exception handling mechanism is basically built upon three keywords namely try, throw

and catch. The keyword try is used to preface a block of statements which may generate

exceptions. This block of statement is called try block. When an exception is detected it is

thrown using throw statement in the try block. A catch block defined by the keyword catch

'catches' the exception thrown by the throw statement in the try block and handles it

appropriately. The catch block that catches an exception must immediately follow the try block

that throws the exception. The general form for this is

……………….

……………….. try

{

…………

……………..

//block of statements which detects and throw an exceptions

throw exception;

…………….

…………….

}

catch(type arg)

170

catch block

Detects and throw an exception

try block

Catch and handles the exception

//catches exceptions

{

… ... // Block of statements that handles the exceptions

………………

…………….

}

………….

…………..

When the try block throws an exception, the program control leaves the try block and enters the

catch statement of the catch block. If the type of object thrown matches the arg type in the catch

statement, then the catch block is executed for handling the exception. If they do not match,

the program is aborted with the help of abort() function which is executed implicitly by the

compiler. When no exception is detected and thrown, the control goes to the statement

immediately after the catch block i.e catch block is skipped. The below diagram 12.1 will

show the mechanism of exception handling

Exception object

Figure 12.1 The block throwing exception The following program shows the use of try-catch blocks.

Program12.1 #include<iostream> using namespace std; int main()

{

int a,b;

cout<<”enter the values of a and b”; cin>>a;

cin>>b; int x = a- b;

try

{

if(x!=0)

{

cout<<”result(a/x) = “<<a/x<<”\n”;

171

}

else

{

throw(x);

}

}

catch(int i)

{

cout<<”exception caught : x = “<<x<<”\n”;

}

cout<<”end”; return 0;

}

Output:

enter value of a and b

20 15

result(a/x)=4 end Second run

enter value of a and b

10 10

exception caught:x=0 end

The program detects and catches a division by zero problems. The output of first run shows a

successful execution. When no exception is thrown, the catch statement is skipped and

execution resumes with the first line after the catch. In the second run the denominator x

become zero and therefore a division by zero situation occurs. This exception is thrown using

the object x. Since the exception object is of integer type, the catch statement containing int

type argument catches the exception and displays necessary message.

The exceptions are thrown by functions that are invoked from within the try block. The point at

which the throw is executed is called throw point. Once an exception is thrown to catch block,

control cannot return to the throw point.

The general format of code for this kind of relationship is shown below type function (arg list)

//function with exception

{ ………..

…………… throw(object);

//throw exception

172

………..

………..

}

………

…………. try

{ ……….

………. Invoke function here

………..

}

Catch (type arg)

//catches exception

{

…………..

………….

Handle exception here

………….

}

………..

It is to be noted here that the try block is immediately followed by the catch block irrespective

of the location of the throw point.

The below program demonstrates how a try block invokes a function that generates an

exception

Program 12.2

//Throw point outside the try block

include <iostream> using namespace std; void divide (int x,int y,int z)

{

cout<<”we are outside the function”; if ((x-y) != 0)

{ int r=z/(x-y); cout<<”result = “<<r;

}

else

{

throw(x-y);

}

173

}

int main()

{

try

{

cout<<”we are inside the try block”; divide(10,20,30); divide(10,10,20);

}

catch (int i)

{

cout<<”caught the exception”;

}

return 0;

}

The output of the above program is We are outside the try block

We are inside the function Result =-3

We are inside the function Caught the exception

12.3 Throwing mechanism:-

When an exception is encountered it is thrown using the throw statement in the following

form:

throw (exception); throw exception; throw;

The operand object exception may be of any type including constants. It is also possible to

throw objects not intended for error handling. When an exception is thrown, it will be caught

by the catch statement associated with the try block. In other words the control exits the try block

and transferred to catch block after the try block. Throw point can be in the deep nested scope

within the try block or in a deeply nested function call.

12.4 Catching mechanism:-

Code for handling exceptions is included in catch blocks. The catch block is like a function

definition and is of form

Catch(type arg)

{ statements for managing exceptions

The type indicates the type of exception that catch block handles. The parameter arg is an

optional parameter name. The catch statement catches an exception whose type matches with

174

the type of catch argument. When it is caught, the code in the catch block is executed. After

executing the handler, the control goes to the statement immediately following in catch block.

Due to mismatch, if an exception is not caught abnormal program termination wills occur. In

other words catch block is simply skipped if the catch statement does not catch an exception.

12.4.1 Multiple Catch Statements:-

In some situations the program segment has more than one condition to throw an exception.In

such case more than one catch blocks can be associated with a try block as shown below

try

{//try block

}

catch(type1 arg)

{

//catch block1

}

catch(type 2 arg)

{

//catch block 2

}

……………..

…………….

catch (type N arg)

{

//catch block N

}

When an exception is thrown, the exception handlers are searched in order for an appropriate

match. The first handler that yields a match is executed. After executing the handler, the control

goes to the first statement after the last catch block for that try. When no match is found, the

program is terminated. If in some case the arguments of several catch statements match the

type of an exception, then the first handler that matches the exception type is executed.

The below program shows the example of multiple catch statements.

Program12.3: MULTIPLE CATCH STATEMENTS

#include <iostream> using namespace std; void test (int x)

175

{

try

{

if (x==1) throw x; //int else

if(x==0) throw 'x'; //char else

if (x== -1) throw 1.0; //double cout<<”end of try- block \n”;

}

catch(char c) //Catch 1

{

cout<<”Caught a character \n”;

}

catch (int m) //Catch 2

{ cout <<”caught an integer\n”;

}

catch (double d) //catch 3

{ cout<<”caught a double \n”;

}

cout<<”end of try –catch system \n\n”;

}

int main()

{

cout<<”Testing multiple catches \n”; cout<<”x== 1 \n”; test(1); cout<<”x== 0 \n”;

test(0); cout<<”x == -1 \n”; test (-1); cout <<”x== 2 \n”; test (2);

return 0;

}

The program when executed first invokes the function test() with x=1 and throws x an int

exception. This matches the type of parameter m in catch 2 and therefore catch2 handler is

executed. Immediately after the execution , the function throws 'x', a character type exception

and therefore the first handler is executed.Finally the handler catch3 is executed when a double

type exception is thrown. Every time only the handler which catches the exception is executed

and all other handlers are bypassed.

12.4.2 Catch All Exceptions:-

In some cases when all possible type of exceptions cannot be anticipated and may not be able to

176

design independent catch handlers to catch them, in such situations a single catch statement is

forced to catch all exceptions instead of certain type alone.

This can be achieved by defining the catch statement using ellipses as follows catch(. . .)

{

//statement for processing all exceptions

}

The below program illustrate the functioning of catch(…) Program 12.4: CATCHING ALL

EXCEPTIONS

#include <iostream> using namespace std; void test(int x)

{

try

{

if (x== 0) throw x; //int

if (x== -1) throw 'x'; //char

if (x== 1) throw 1.0; //float

}

catch(. . .)

//catch all

{

cout<<”caught an exception \n”;

}

}

int main()

{

cout<<”testing generic catch\n”; test(-1);

test(0);

test(1); return 0;}

We can use the catch(. . .) as a default statement along with other catch handlers so that it can

catch all those exceptions that are not handled explicitly.

12.5 Rethrowing an Exception:-

A handler may decide to rethrow an exception caught without processing them.In such

situations we can simply invoke throw without any argument like

177

throw;

This cause the current exception to be thrown to the next enclosing try/catch sequence and is

caught by a catch statement listed after that enclosing try block. The following program shows

how an exception is rethrown and caught.

Program 12.5: RETHROWING AN EXCEPTION

#include <iostream> using namespace std;

void divide(double x, double y)

{

cout<<”Inside Function \n”; try

{ if (y== 0.0)

throw y; //throwing double else

cout<<”division = “<< x/y<<”\n”;

}

catch(double) //Catch a double

{

cout<<”Caught double inside a function \n”; throw; //rethrowing double

}

cout<<”end of function\n\n”;

}

int main()

{

cout <<”inside main \n”; try

{ divide(10.5,2.0);

divide(20.0,0.0);

}

catch (double)

{ cout <<”caught double inside main \n”;

}

cout <<”End of mai\n “; return 0;

}

When an exception is rethrown, it will not be caught by the same catch statement or any other

catch in that group. It will be caught by the an appropriate catch in the outer try/catch sequence

178

for processing.

12.6 Specifying Exceptions:-

In some cases it may be possible to restrict a function to throw only certain specified exceptions.

This is achieved by adding a throw list clause to function definition. The general form of using

an exception specification is:

Type function (arg-list) throw (type-list)

{

…………..

………… function body

……….

}

The type list specifies the type of exceptions that may be thrown. Throwing any other type of

exception will cause abnormal program termination. To prevent a function from throwing any

exception, it can be done by making the type list empty like

throw(); //empty list

in the function header line.

The following program will show this

Program 12.6: TESTING THROW RESTRICTIONS

#include <iostream> using namespace std;

void test (int x) throw (int,double)

{

if (x== 0) throw 'x'; else

//char

if (x== 1) throw x;

//int else

if (x== -1) throw 1.0; //double cout <<”End of function block \n “;

}

int main()

{

179

try

{

cout<<”testing throw restrictions\n”; cout<<”x== 0\n “;

test (0); cout<<”x==1 \n”; test(1); cout<<”x== -1 \n”; test(-1);

cout <<”x== 2 \n”; test(2);

}

catch(char c)

{

cout <<”caught a character \n”;

}

catch(int m)

{

cout<<”caught an integer \n”;

}

catch (double d)

{

cout<<”caught a double \n”;

}

cout<<” end of try catch system \n \n”; return 0;

}

12.7 Summary

Exceptions are peculiar problems that a program may encounter at run time. ANSI C++ has

built in language function for trapping the errors and controlling the exceptions. All C ++

compilers support this newly added facility. An exception is an object. It is send from the part

of the program where an error occurs to the part of program which is going to control the

error. C++ exception method provides three keywords, try, throw and catch. The keyword try

is used at the starting of exception. The entire exception statement are enclosed in the curly

braces. It is known as try block. The catch block receives the exception send by the throw

block in the try block. Multiple catch blocks can be used in a program. It is also possible to

define single or default catch () block from one or more exception of different type. In such

situation a single catch block is used for catch exceptions thrown by the multiple throw

statement. It is also possible to again pass the exception received to another exception handler

180

i.e an exception is thrown from catch() block and this is known as rethrowing the exception. The

specified exception are used when we want to bind the function to throw only specified

exceptions. Using a throw list condition can also do this.

12.8 Self Assessment Questions

1. What do you mean by exception handling?

2. Describe the role of keywords try, throw and catch in exception handling?

3. When should a program throw an exception?

4. What is an exception specification? When is it used?

5. When do we used multiple catch handlers?

6. Explain mechanism of exception handling.

181

Chapter 13

Introduction to Standard Template library

Objective:

At the end of this session students shall be learning:

 Introduction,

 The STL Programming Model,

 Understand Containers,

 Algorithms,

 Iterators,

 Function Objects,

 Understand Allocators,

 Understand Adaptors

Structure:

13.1. Introduction

13.2. Algorithms

13.3. C++: Containers in STL

13.4. C++: Iterators in STL

13.5. Use and Application of STL

13.6. Classification of Containers in STL

13.7. Using Container Library in STL

13.8. Standard Exceptions in C++

13.9. Dynamic Memory Allocation in C++

13.10. Summary.

13.11. Self-Assessment Questions

13.1. Introduction

In this chapter, we shall be discussing STL is an acronym for standard template library. It is a

set of C++ template classes that provide generic classes and function that can be used to

implement data structures and algorithms.

182

13.2. The C++ Standard Template Library (STL)

The Standard Template Library (STL) is a set of C++ template classes to provide common

programming data structures and functions such as lists, stacks, arrays, etc. It is a library of

container classes, algorithms and iterators. It is a generalized library and so, its components are

parameterized. STL is mainly composed:

1. Algorithms

2. Containers

3. Iterators

STL

STL provides numerous containers and algorithms which are very useful in completive

programming , for example you can very easily define a linked list in a single statement by

using list container of container library in STL , saving your time and effort.

STL is a generic library , i.e a same container or algorithm can be operated on any data types ,

you don't have to define the same algorithm for different type of elements.

For example , sort algorithm will sort the elements in the given range irrespective of their data

type , we don't have to implement different sort algorithm for different datatypes.

A working knowledge of template classes is a prerequisite for working with STL. STL has four

components

 Algorithms

 Containers

 Functions

 Iterators

13.2 Algorithms

The header algorithm defines a collection of functions especially designed to be used on

ranges of elements. They act on containers and provide means for various operations for the

contents of the containers.

183

1.Algorithm

 Sorting

 Searching

 Important STLAlgorithms

 Useful Array algorithms

 Partition Operations

 Numeric valarray class

STL provide number of algorithms that can be used of any container, irrespective of their type.

Algorithms library contains built in functions that perform complex algorithms on the data

structures. For example: one can reverse a range with reverse() function, sort a range with

sort() function, search in a range with binary search() and so on. Algorithm library provides

abstraction, i.e you don't necessarily need to know how the the algorithm works.

13.3 C++: Containers in STL

Container library in STL provide containers that are used to create data structures like arrays,

linked list, trees etc. These container are generic, they can hold elements of any data types, for

example: vector can be used for creating dynamic arrays of char, integer, float and other

types.

13.4 C++: Iterators in STL

Iterators in STL are used to point to the containers. Iterators actually act as a bridge between

containers and algorithms.

For example: sort() algorithm have two parameters, starting iterator and ending iterator, now

sort() compare the elements pointed by each of these iterators and arrange them in sorted

order, thus it does not matter what is the type of the container and same sort() can be used on

different types of containers.

13.5 Use and Application of STL

STL being generic library provide containers and algorithms which can be used to store and

manipulate different types of data thus it saves us from defining these data structures and

algorithms from the scratch. Because of STL, now we do not have to define our sort function

every time we make a new program or define same function twice for the different data types,

instead we can just use the generic container and algorithms in STL. Such code, saves a lot of

https://www.geeksforgeeks.org/useful-array-algorithms-in-c-stl/
https://www.geeksforgeeks.org/std-valarray-class-c/

184

time, code and effort during programming, thus STL is heavily used in the competitive

programming, plus it is reliable and fast.

Containers Library in STL gives us the Containers, which in simplest words, can be described

as the objects used to contain data or rather collection of object. Containers help us to implement

and replicate simple and complex data structures very easily like arrays, list, trees, associative

arrays and many more.

The containers are implemented as generic class templates, means that a container can be used

to hold different kind of objects and they are dynamic in nature!

Following are some common containers:

·vector : replicates arrays

·queue : replicates queues

·stack : replicates stack

·priority queue : replicates heaps

·list : replicates linked list

·set : replicates trees

·map : associative arrays

13.6 Classification of Containers in STL

Containers are classified into four categories:

 Sequence containers: Used to implement data structures that are sequential in

nature like arrays(array) and linked list(list).

 Associative containers: Used to implement sorted data structures such as map, set etc.

 Unordered associative containers: Used to implement unsorted data structures.

 Containers adaptors: Used to provide different interface to the sequence containers.

13.7 Using Container Library in STL

Following example provides an implementing linked list, first by using structures and then

by list containers.

#include <iostream> struct node

{

int data;

struct node next;

}

185

int main ()

{

struct node list1 = NULL;

}

In the above program is only creating a list node, no insertion and deletion functions are defined,

to do that, you will have to write more line of code.

Now let's see how using Container Library simplifies it. When we use list containers to

implement linked list we just have to include the list header file and use list constructor to

initialize the list.

#include <iostream> #include <list>

int main ()

{

list<int> list1;

}

We have a list, and not just that, the containers library also give all the different methods

which can be used to perform different operations on list such as insertion, deletion, traversal

etc. Thus you can see that it is incredibly easy to implement data structures by using Container

library.

Containers or container classes store objects and data. There are in total seven standard “first-

class” container classes and three container adaptor classes and only seven header files that

provide access to these containers or container adaptors.

 Sequence Containers: implement data structures which can be accessed in a

sequential manner.

 vector

 list

 deque

 arrays

 forward_list

 Container Adaptors : provide a different interface for sequential containers.

 queue

 priority_queue

 stack

 Associative Containers: implement sorted data structures that can be quickly

186

searched (O(log n) complexity).

 set

 multiset

 map

 multimap

Functions in the STL include classes that overload the function call operator. Instances of

such classes are called function objects or functions. Functions allow the working of the

associated function to be customized with the help of parameters to be passed.

 ·Functions

 Iterators, as the name suggests, iterators are used for working upon a sequence of

values. They are the major feature that allow generality in STL.

 Iterators Utility Library

 Defined under <utility header>

 ·pair

13.8 Standard Exceptions in C++

There are some standard exceptions in C++ under <exception> which we can use in our

programs. They are arranged in a parent-child class hierarchy which is depicted below:

 ·std::exception - Parent class of all the standard C++ exceptions.

 ·logic_error - Exception happens in the internal logical of a program. o.domain_error -

Exception due to use of invalid domain.

 o.invalid argument - Exception due to invalid argument.

 o.out_of_range - Exception due to out of range i.e. size requirement exceeds

allocation.

 olength_error - Exception due to length error.

 ·runtime_error - Exception happens during runtime.

 o.range_error - Exception due to range errors in internal computations. o.overflow_error

- Exception due to arithmetic overflow errors. o.underflow_error - Exception due to

arithmetic underflow errors

 ·bad_alloc - Exception happens when memory allocation with new() fails.

 ·bad_cast - Exception happens when dynamic cast fails.

 ·bad_exception - Exception is specially designed to be listed in the dynamic-

187

exception-specifier.

 ·bad_typeid - Exception thrown by typeid.

13.9 Dynamic Memory Allocation in C++

Below is basic memory architecture used by any C++ program:

HEAP

STACK

DATA
SEGMENT

CODE
SEGMENT

 Code Segment: Compiled program with executive instructions are kept in code

segment. It is read only. In order to avoid over writing of stack and heap, code

segment is kept below stack and heap.

 Data Segment: Global variables and static variables are kept in data segment. It is not

read only.

 Stack: A stack is usually pre-allocated memory. The stack is a LIFO data structure. Each

new variable is pushed onto the stack. Once variable goes out of scope, memory is

freed. Once a stack variable is freed, that region of memory becomes available for

other variables. The stack grows and shrinks as functions push and pop local variables. It

stores local data, return addresses, arguments passed to functions and current status of

memory.

 Heap: Memory is allocated during program execution. Memory is allocated using new

operator and deallocating memory using delete operator.

13.10 Summary

In this chapter, we have learned the standard template library. It is a set of C++ template

classes that provide generic classes and function that can be used to implement data

structures and algorithms. In addition to this, we have understand Containers, Algorithms,

188

Iterators, Function Objects, understand Allocators, and understand Adaptors.

13.11 Self Assessment Questions

1. What is a stream? Describe briefly the features of I/O system supported by C++.

2. How is cout able to display various types of data without any special instructions?

3. Why it is necessary to include the file iostream in all our programs?

4. What is the role of iomanip file? What is the basic difference between

manipulators and ios member functions in implementation? Give

examples.

5. What are input and output streams?

6. What are the various classes available for file operations.

7. What is a file mode ?describe the various file mode options available.

8. Describes the various approaches by which we can detect the end of file condition.

9. What do you mean by command line arguments?

189

Chapter 14

Namespace

Objective:

At the end of this session students shall be learning:

 Introduction

 Defining a Namespace,

 The Standard Namespace,

 Nested Namespace,

 Unnamed Namespace,

 Namespace Alias

Structure:

14.1. Introduction

14.2. Creating a Namespace

14.3. Rules to create Namespaces

14.4. Using a Namespace in C++

14.5. Discontinuous Namespaces

14.6. Nested Namespaces

14.7. Summary.

14.8. Self Assessment Questions

190

14.1. Introduction

So far we have learned and used Namespace. Namespace is a new concept introduced by the

ANSI C++ standards committee. This defines a scope for the identifiers that are used in a

program. For using the identifier defined in the namespace scope we must include the using

directive, like

Using namespace std;

Here, std is the namespace where ANSI C++ standard class libraries are defined. All ANSI C++

programs must include this directive. This will bring all the identifiers defined in std to the

current global scope. Using and namespace are the new keyword of C++.

Using namespace std, tells the compiler to use standard namespace. Namespace collects

identifiers used for class, object and variables. Namespace can be used by two ways in a

program, either by the use of using statement at the beginning, like we did in above mentioned

program or by using name of namespace as prefix before the identifier with scope resolution (::)

operator.

14.2. Creating a Namespace

Namespace is a container for identifiers. It puts the names of its members in a distinct space

so that they don't conflict with the names in other namespaces or global namespace.

Creating a namespace is similar to creation of a class. namespace MySpace

{

// declarations

}

int main()

{ // main function

}

This will create a new namespace called MySpace, inside which we can put our member

declar1ations.

14.3. Rules to create Namespaces

1. The namespace definition must be done at global scope, or nested inside another

namespace.

2. Namespace definition doesn't terminates with a semicolon like in class definition.

3. You can use an alias name for your namespace name, for ease of use. Example for Alias:

191

namespace Study To night Dot Com

{

void study(); class Learn

{

// class defintion

};

}

// St is now alias for StudyTonightDotCom namespace St = StudyTonightDotCom;

4. You cannot create instance of namespace.

5. There can be unnamed namespaces too. Unnamed namespace is unique for each

translation unit. They act exactly like named namespaces.

Example for Unnamed namespace:

namespace

{

class Head

{

// class defintion

};

// another class class Tail

{

// class defintion

};

int i,j,k;

}

int main()

{

// main function

}

6. A namespace definition can be continued and extended over multiple files, they are not

redefined or over ridden.

For example, below is some header1.h header file, where we define a namespace: namespace

MySpace

{

192

int x; void f();

}

We can then include the header1.h header file in some other header2.h header file and add

more to an existing namespace:

#include "header1.h"; namespace MySpace

{

int y; void g();

}

14.4. Using a Namespace in C++

There are three ways to use a namespace in program,

1. Scope resolution operator (::)

2. The using directive

3. The using declaration

14.4.1. With Scope resolution operator (::)

Any name (identifier) declared in a namespace can be explicitly specified using the

namespace's name and the scope resolution :: operator with the identifier.

namespace MySpace

{

class A

{

static int i; public:

void f();

};

// class name declaration class B;

//gobal function declaration void func();

}

// Initializing static class variable int MySpace::A::i=9;

class MySpace::B

{

int x; public:

int getdata()

{

193

cout << x;

}

// Constructor declaration B();

}

// Constructor definition MySpace::B::B()

{

x=0;

}

14.4.2. The using directive

using keyword allows you to import an entire namespace into your program with a global

scope. It can be used to import a namespace into another namespace or any program.

Consider a header file Namespace1.h: namespace X

{

int x;

class Check

{

int i;

};

}

Including the above namespace header file in Namespace2.h file: #include "Namespace1.h";

namespace Y

{

using namespace X; Check obj;

int y;

}

We imported the namespace X into namespace Y, hence class Check will now be available in

the namespace Y.

Hence we can write the following program in a separate file, let's say program1.cpp #include

"Namespace2.h";

void test()

{

using Namespace Y;

194

// creating object of class Check Check obj2;

}

Hence, the using directive makes it a lot easier to use namespace, wherever you want.

14.4.3. The using declaration

When we use using directive, we import all the names in the namespace and they are available

throughout the program, that is they have a global scope. But with using declaration, we

import one specific name at a time which is available only inside the current scope.

Note here that, the name imported with using declaration can override the name imported

with usingdirective

Consider a file Namespace.h: namespace X

{

void f()

{

cout << "f of X namespace\n";

}

void g()

{

cout << "g of X namespace\n";

}

Now let's create a new program file with name program2.cpp with below code:

#include "Namespace.h";

void h()

{

using namespace X; // using directive

using Y::f; // using declaration

f(); // calls f() of Y namespace

X::f(); // class f() of X namespace

}

f of Y namespace

f of X namespace

195

In using declaration, we never mention the argument list of a function while importing it,

hence if a namespace has overloaded function, it will lead to ambiguity

#include "Namespace.h"; void h()

{

using namespace X; // using directive using Y::f; // using declaration

f(); // calls f() of Y namespace X::f(); // class f() of X namespace

}

#include "Namespace.h"; void h()

{

using namespace X; // using directive using Y::f; // using declaration

f(); // calls f() of Y namespace X::f(); // class f() of X namespace

}

}

// second name space namespace second_space{

void func(){

cout << "Inside second_space" << endl;

}

}

using namespace first_space; int main ()

{

// This calls function from first name space. func();

return 0;

}

If we compile and run above code, this would produce the following result: Inside first_space

The 'using' directive can also be used to refer to a particular item within a namespace. For

example, if the only part of the std namespace that you intend to use is cout, you can refer to it as

follows:

using std::cout;

Subsequent code can refer to cout without prepending the namespace, but other items in the std

namespace will still need to be explicit as follows:

#include <iostream> using std::cout;

int main ()

{

cout << "std::endl is used with std!" << std::endl; return 0;}

196

If we compile and run above code, this would produce the following result: std::endl is used with

std!

Names introduced in a using directive obey normal scope rules. The name is visible from the

point of the using directive to the end of the scope in which the directive is found. Entities with

the same name defined in an outer scope are

hidden.

14.5. Discontinuous Namespaces

A namespace can be defined in several parts and so a namespace is made up of the sum of its

separately defined parts. The separate parts of a namespace can be spread over multiple files.

So, if one part of the namespace requires a name defined in another file, that name must still be

declared. Writing a following namespace definition either defines a new namespace or adds new

elements to an existing one:

namespace namespace_name {

// code declarations

}

14.6. Nested Namespaces

Namespaces can be nested where you can define one namespace inside another namespace as

follows:

namespace namespace_name1 {

// code declarations

namespace namespace_name2 {

// code declarations

}

}

You can access members of nested namespace by using resolution operators as follows:

// to access members of namespace_name2

using namespace namespace_name1::namespace_name2;

// to access members of namespace: name1 using namespace namespace_name1;

In the above statements if you are using namespace_name1, then it will make elements of

namespace_name2 available in the scope as follows:

#include <iostream> using namespace std;

197

// first name space namespace first_space{ void func(){

cout << "Inside first_space" << endl;

}

// second name space namespace second_space{

void func(){

cout << "Inside second_space" << endl;

}

}

}

using namespace first_space::second_space; int main ()

{

// This calls function from second name space. func();

return 0;

}

If we compile and run above code, this would produce the following result: Inside second_space

14.7. Summary.

In this chapter, we have introduction to the concept defining a Namespace, The Standard

Namespace, Nested Namespace, Unnamed Namespace, Namespace Alias.

14.8. Self Assessment Questions

1. What is a namespace? Why it is necessary? Explain the advantages and

disadvantages of namespaces.

2. What is a namespace? What are the rules for declaring namespace?

3. Write a note on :

a. Nested namespace.

b. scope resolution of namespace.

198

Chapter 15

New Style Caste and RTRI

Objective:

At the end of this session students shall be learning:

 Introduction,

 New-Style Casts,

 Static_cast,

 Dynamic_cast,

 Const_cast,Reinterpret_cast,

 A Simple Application of Run-Time Type ID,

 Typed can be applied to Templates classes

Structure:

15.1 Introduction

15.2 Type Casting

15.3 Const_cast

15.4 The New C++ Casting Operators

15.5 Reinterpret_cast

15.6 Summary

15.7 Self Assessment Questions

15.1. Introduction

Casts are used to convert the type of an object, expression, function argument, or return value

to that of another type. Some conversions are performed automatically by the compiler without

intervention by the programmer. These conversions are called implicit conversions. The

standard C++ conversions and user-defined conversions are performed implicitly by the

compiler where needed. Other conversions which must be explicitly specified by the

programmer and are appropriately called explicit conversions.

Standard conversions are used for integral promotions (e.g., enum to int), integral

conversions (e.g., int to unsigned int), floating point conversions (e.g., float to double),

floating-integral conversions (e.g., int to float), arithmetic conversions (e.g., converting

operands to the type of the widest operand before evaluation), pointer conversions (e.g.,

199

derived class pointer to base class pointer), reference conversions (e.g., derived class

reference to base class reference), and pointer-to- member conversions (e.g., from pointer to

member of a base class to pointer to member of a derived class).

Type conversion (often a result of type casting) refers to changing an entity of one data type,

expression, function argument, or return value into another. This is done to take advantage of

certain features of type hierarchies. For instance, values from a more limited set, such as

integers, can be stored in a more compact format and later converted to a different format

enabling operations not previously possible, such as division with several decimal places'

worth of accuracy.

In the object-oriented programming paradigm, type conversion allows programs also to treat

objects of one type as one of another. One must do it carefully as type casting can lead to loss

of data.

Automatic type conversion (or standard conversion) happens whenever the compiler expects

data of a particular type, but the data is given as a different type, leading to an automatic

conversion by the compiler without an explicit indication by the programmer.

When an expression requires a given type that cannot be obtained through an implicit

conversion or if more than one standard conversion creates an ambiguous situation, the

programmer must explicitly specify the target type of the conversion. If the conversion is

impossible it will result in an error or warning at compile time. Warnings may vary depending

on the compiler used or compiler options. This type of conversion is useful and relied upon to

perform integral promotions, integral conversions, floating point conversions, floating-

integral conversions, arithmetic conversions, pointer conversions.

15.2. Type Casting:

Type Casting is used to convert the type of a variable, function, object, expression or return

value to another type. It is the process of converting one type into another.

In other words converting an expression of a given type into another is called type casting.

C++ supports following 4 types of casting operators:

1. const_cast

2. static_cast

3. dynamic_cast

4. reinterpret_cast

15.3. const_cast:

200

const_cast is used to cast away the consents' of variables. Following are some interesting

facts about const_cast. A const_cast operator is used to add or remove a const or volatile

modifier to or from a type. In general, it is dangerous to use the const_cast operator, because

it allows a program to modify a variable that was declared const, and thus was not supposed to

be modifiable.

const_cast can be used to change non-const class members inside a const member function.

Consider the following code snippet. Inside const member function fun(), 'this' is treated by the

compiler as 'const student const this', i.e. 'this' is a constant pointer to a constant object, thus

compiler doesn't allow to change the data members through 'this' pointer. const_cast changes

the type of 'this' pointer to 'student const this'.

filter_none edit play_arrow brightness_

#include <iostream> using namespace std; class student

{

private:

int roll; public:

// constructor student(int r):roll(r) {}

// A const function that changes roll with the help of const_cast void fun() const

{

 (const_cast <student> (this))->roll = 5;

}

int getRoll() { return roll; }

};

int main(void)

{

student s(3);

cout << "Old roll number: " << s.getRoll() << endl; s.fun();

cout << "New roll number: " << s.getRoll() << endl; return 0;

}

Output:

Old roll number: 3 New roll number: 5

const_cast can be used to pass const data to a function that doesn't receive const. For example, in

the following program fun() receives a normal pointer, but a pointer to a const can be passed

with the help of const_cast.

filter_none edit play_arrow brightness_4

201

#include <iostream> using namespace std; int fun(int ptr)

{

return (ptr + 10);

}

int main(void)

{

const int val = 10; const int ptr = &val;

int ptr1 = const_cast <int >(ptr); cout << fun(ptr1);

return 0;

}

Output:

20 0

3) It is undefined behavior to modify a value which is initially declared as const.

Consider the following program. The output of the program is undefined. The variable 'val' is

a const variable and the call 'fun(ptr1)' tries to modify 'val' using const_cast.

#include <iostream> using namespace std; int fun(int ptr)

{

ptr = ptr + 10; return (ptr);

}

int main(void)

{

const int val = 10; const int ptr = &val;

int ptr1 = const_cast <int >(ptr); fun(ptr1);

cout << val; return 0;

}

Output:

Undefined Behavior

It it fine to modify a value which is not initially declared as const. For example, in the above

program, if we remove const from declaration of val, the program will produce 20 as output.

#include <iostream> using namespace std;

int fun(int ptr)

{

202

ptr = ptr + 10; return (ptr);

}

int main(void)

{

int val = 10;

const int ptr = &val;

int ptr1 = const_cast <int >(ptr); fun(ptr1);

cout << val; return 0;

}

4) const_cast is considered safer than simple type casting. It'safer in the sense that the

casting won't happen if the type of cast is not same as original object. For example, the

following program fails in compilation because 'int ' is being typecasted to 'char‟

#include <iostream> using namespace std; int main(void)

{

int a1 = 40;

const int b1 = &a1;

char c1 = const_cast <char > (b1); // compiler error

c1 = 'A';

return 0;

}

output:

prog.cpp: In function 'int main()':

prog.cpp:8: error: invalid const_cast from type 'const int' to type 'char'

5) const_cast can also be used to cast away volatile attribute. For example, in the

following program, the typeid of b1 is PVKi (pointer to a volatile and constant integer) and

typeid of c1 is Pi (Pointer to integer)

#include <iostream> #include <typeinfo> using namespace std;

int main(void)

{

int a1 = 40;

const volatile int b1 = &a1;

cout << "typeid of b1 " << typeid(b1).name() << '\n'; int c1 = const_cast <int > (b1);

203

cout << "typeid of c1 " << typeid(c1).name() << '\n'; return 0;

}

Output:

typeid of b1 PVKi typeid of c1 Pi

Exercise

Predict the output of following programs. If there are compilation errors, then fix them.

Question 1

#include <iostream> using namespace std;

class student

{

private:

const int roll; public:

// constructor student(int r):roll(r) {}

// A const function that changes roll with the help of const_cast void fun() const

{

(const_cast <student> (this))->roll = 5;

}

int getRoll() { return roll; }

};

int main(void)

{

student s(3);

cout << "Old roll number: " << s.getRoll() << endl; s.fun();

cout << "New roll number: " << s.getRoll() << endl;

return 0;

}

Question 2

#include <iostream> using namespace std;

class student

{

204

private:

const int roll; public:

// constructor student(int r):roll(r) {}

// A const function that changes roll with the help of const_cast void fun() const

{

(const_cast <student> (this))->roll = 5;

}

int getRoll() { return roll; }

};

int main(void)

{

student s(3);

cout << "Old roll number: " << s.getRoll() << endl; s.fun();

cout << "New roll number: " << s.getRoll() << endl;

return 0;

}

You can provide a user-defined conversion from a class X to a class Y by providing a

constructor for Y that takes an X as an argument:

Y(const X& x)

or by providing a class Y with a conversion operator: operator X()

When a type is needed for an expression that cannot be obtained through an implicit

conversion or when more than one standard conversion creates an ambiguous situation, the

programmer must explicitly specify the target type of the conversion.

In C, an expression, expr, of type S can be cast to another type T in one of the following ways.

By using an explicit cast:

(T) expr

or by using a functional form:

T(expr)

We will refer to either of these constructs as the old C-style casts.

205

15.4. The New C++ Casting Operators:

The new C++ casting operators are intended to provide a solution to the shortcomings of the

old C-style casts by providing: 1. Improved syntax. Casts have a clear, concise, although

somewhat cumbersome syntax. This makes casts easier to understand, find, and maintain. 2.

Improved semantics. The intended meaning of a cast is no longer ambiguous. Knowing what

the programmer intended the cast to do makes it possible for compilers to detect improper

casting operations. 3. Type-safe conversions. Allow some casts to be performed safely at run-

time. This will enable programmers to check whether a particular cast is successful or not.

15.5. The reinterpret_cast Operator

The reinterpret_cast operator takes the form reinterpret_cast<T> (expr) and is used to

perform conversions between two unrelated types. The result of the conversion is usually

implementation dependent and, therefore, not likely to be portable. You should use this

type of cast only when absolutely necessary. A reinterpret_cast can also be used to

convert a pointer to an integral type. If the integral type is then converted back to the same

pointer type, the result will be the same value as the original pointer.

15.6. Summary

The introduction of the new C++ cast operators heralds a significant advancement in

programming practices, facilitating the development of programs that are not only easier to

maintain and comprehend but also ensure safer conversions. However, it's imperative to

approach casting operations with caution and discernment. When transitioning from old C-

style casts to utilize these modern casting operators, it's essential to introspect and question

the necessity of each cast. There may arise instances where the use of a cast is not truly

warranted. It could indicate a potential misuse of a class hierarchy or an opportunity to

achieve the same outcome through the implementation of virtual functions. Therefore, while

leveraging C++ cast operators, exercising prudence and considering alternative design

patterns can lead to more robust and maintainable codebases.

206

15.7 Self Assessment Questions

1. What is the purpose of using new-style casts in C++?

2. How does the static_cast differ from other new-style casts in C++?

3. Can you explain the syntax and usage of static_cast in C++?

4. When would you use a static_cast in a C++ program? Provide examples.

5. What are the advantages of using static_cast compared to C-style casts?

6. What are the limitations or risks associated with using static_cast in C++?

7. How does dynamic_cast differ from static_cast in C++?

8. When would you use a dynamic_cast in a C++ program? Provide examples.

9. What are the scenarios where dynamic_cast is particularly useful?

10. What are the key differences between static_cast and dynamic_cast in terms of

performance and behavior?

	OOP final.cdr
	36df5be7a58ba01367c0aa3ad9f1db822616bce27749223a5d6c27aa2946f4c2.pdf
	OOP final.cdr

